Resources

Documentation Example 13 for PROC GLIMMIX

/****************************************************************/
/*          S A S   S A M P L E   L I B R A R Y                 */
/*                                                              */
/*    NAME: gmxex13                                             */
/*   TITLE: Documentation Example 13 for PROC GLIMMIX           */
/*          Response Surface Comparisons with Multiplicity      */
/*          Adjustments                                         */
/* PRODUCT: STAT                                                */
/*  SYSTEM: ALL                                                 */
/*    KEYS: Generalized linear mixed models                     */
/*          Ordinal data                                        */
/*          Step-down p-values                                  */
/*   PROCS: GLIMMIX, SORT, PRINT                                */
/*    DATA: Multicenter clinical trial data from                */
/*          Koch, G.G., Carr, G.J., Amara, I.A., Stokes, M.E.,  */
/*          and Uryniak (1990)                                  */
/*          Categorical Data Analysis, Ch. 13 in                */
/*          Statistical Methodology in the Pharmaceutical       */
/*          Sciences, Donald A. Berry, ed                       */
/*          New York: Marcel Dekker                             */
/*                                                              */
/* SUPPORT: Oliver Schabenberger                                */
/*     REF:                                                     */
/*    MISC:                                                     */
/****************************************************************/
data Clinical;
   do Center =   1,  2;
      do Gender = 'F','M';
         do Drug   = 'A','P';
            input nPatient @@;
            do iPatient = 1 to nPatient;
               input ID Age (t0-t4) (1.) @@;
               output;
            end;
         end;
      end;
   end;
   datalines;
 2  53 32 12242  18 47 22344
 5   5 13 44444  19 31 21022  25 35 10000  28 36 23322
    36 45 22221
25  54 11 44442  12 14 23332  51 15 02333  20 20 33231
    16 22 12223  50 22 21344   3 23 33443  32 23 23444
    56 25 23323  35 26 12232  26 26 22222  21 26 24142
     8 28 12212  30 28 00121  33 30 33442  11 30 34443
    42 31 12311   9 31 33444  37 31 02321  23 32 34433
     6 34 11211  22 46 43434  24 48 23202  38 50 22222
    48 57 33434
24  43 13 34444  41 14 22123  34 15 22332  29 19 23300
    15 20 44444  13 23 33111  27 23 44244  55 24 34443
    17 25 11222  45 26 24243  40 26 12122  44 27 12212
    49 27 33433  39 23 21111   2 28 20000  14 30 10000
    31 37 10000  10 37 32332   7 43 23244  52 43 11132
     4 44 34342   1 46 22222  46 49 22222  47 63 22222
 4  30 37 13444  52 39 23444  23 60 44334  54 63 44444
12  28 31 34444   5 32 32234  21 36 33213  50 38 12000
     1 39 12112  48 39 32300   7 44 34444  38 47 23323
     8 48 22100  11 48 22222   4 51 34244  17 58 14220
23  12 13 44444  10 14 14444  27 19 33233  47 20 24443
    16 20 21100  29 21 33444  20 24 44444  25 25 34331
    15 25 34433   2 25 22444   9 26 23444  49 28 23221
    55 31 44444  43 34 24424  26 35 44444  14 37 43224
    36 41 34434  51 43 33442  37 52 12122  19 55 44444
    32 55 22331   3 58 44444  53 68 23334
16  39 11 34444  40 14 21232  24 15 32233  41 15 43334
    33 19 42233  34 20 32444  13 20 14444  45 33 33323
    22 36 24334  18 38 43000  35 42 32222  44 43 21000
     6 45 34212  46 48 44000  31 52 23434  42 66 33344
;
%macro Contrast(from,to,byA,byT);
   %let nCmp = 0;
   %do age = &from %to &to %by &byA;
      %do t0  =  0 %to  4 %by &byT;
         %let nCmp = %eval(&nCmp+1);
      %end;
   %end;
   %let iCmp = 0;
   %do age = &from %to &to %by &byA;
      %do t0  =  0 %to  4 %by &byT;
         %let iCmp = %eval(&iCmp+1);
         "%trim(%left(&age)) %trim(%left(&t0))"
           drug     1    -1
           drug*age &age -&age
           drug*t0  &t0  -&t0
         %if (&icmp < &nCmp) %then %do; , %end;
      %end;
   %end;
%mend;
proc glimmix data=clinical;
   t = (t3+t4)/2;
   class drug;
   model t = drug t0 age drug*age drug*t0;
   estimate %contrast(10,70,3,1)
              / adjust=simulate(seed=1)
                stepdown(type=logical);
   ods output Estimates=EstStepDown;
run;
proc sort data=EstStepDown;
   by Probt;
run;
proc print data=EstStepDown(obs=20);
   var Label Estimate StdErr Probt AdjP;
run;
proc glimmix data=clinical;
   t = (t3+t4)/2;
   class drug;
   model t = drug t0 age drug*age drug*t0;
   estimate %contrast(10,70,3,1)
              / adjust=simulate(seed=1);
   ods output Estimates=EstAdjust;
run;
proc glimmix data=clinical;
   t = (t3+t4)/2;
   class drug;
   model t = drug t0 age drug*age drug*t0;
   estimate %contrast(10,70,3,1);
   ods output Estimates=EstUnAdjust;
run;
data clinical_uv;
   set clinical;
   array time{2} t3-t4;
   do i=1 to 2; rating = time{i}; output; end;
run;
proc glimmix data=clinical_uv method=laplace;
   class center id drug;
   model rating = drug t0 age drug*age drug*t0 /
                  dist=multinomial link=cumlogit;
   random intercept / subject=id(center);
   covtest 0;
   estimate %contrast(10,70,3,1)
              / adjust=simulate(seed=1)
                stepdown(type=logical);
   ods output Estimates=EstStepDownMulti;
run;
proc sort data=EstStepDownMulti;
   by Probt;
run;
proc print data=EstStepDownMulti(obs=20);
   var Label Estimate StdErr Probt AdjP;
run;