Resources

Documentation Example 11 for PROC GLIMMIX

/****************************************************************/
/*          S A S   S A M P L E   L I B R A R Y                 */
/*                                                              */
/*    NAME: gmxex11                                             */
/*   TITLE: Documentation Example 11 for PROC GLIMMIX           */
/*          Maximum Likelihood in Proportional Odds Model with  */
/*          Random Effects                                      */
/* PRODUCT: STAT                                                */
/*  SYSTEM: ALL                                                 */
/*    KEYS: Generalized linear mixed models                     */
/*          Ordinal data                                        */
/*          Maximum likelihood                                  */
/*          Adaptive quadrature                                 */
/*   PROCS: GLIMMIX, SORT, SGPLOT                               */
/*    DATA:                                                     */
/*                                                              */
/* SUPPORT: Oliver Schabenberger                                */
/*     REF:                                                     */
/*    MISC:                                                     */
/****************************************************************/
data foot_mv;
   input yr b1 b2 b3 k1 k2 k3;
   sire = _n_;
   datalines;
  1  1  0  0  52 25  0
  1  1  0  0  49 17  1
  1  1  0  0  50 13  1
  1  1  0  0  42  9  0
  1  1  0  0  74 15  0
  1  1  0  0  54  8  0
  1  1  0  0  96 12  0
  1 -1  1  0  57 52  9
  1 -1  1  0  55 27  5
  1 -1  1  0  70 36  4
  1 -1  1  0  70 37  3
  1 -1  1  0  82 21  1
  1 -1  1  0  75 19  0
  1 -1 -1  0  17 12 10
  1 -1 -1  0  13 23  3
  1 -1 -1  0  21 17  3
 -1  0  0  1  37 41 23
 -1  0  0  1  47 24 12
 -1  0  0  1  46 25  9
 -1  0  0  1  79 32 11
 -1  0  0  1  50 23  5
 -1  0  0  1  63 18  8
 -1  0  0 -1  30 20  9
 -1  0  0 -1  31 33  3
 -1  0  0 -1  28 18  4
 -1  0  0 -1  42 27  4
 -1  0  0 -1  35 22  2
 -1  0  0 -1  33 18  3
 -1  0  0 -1  35 17  4
 -1  0  0 -1  26 13  2
 -1  0  0 -1  37 15  2
 -1  0  0 -1  36 14  1
 -1  0  0 -1  63 20  3
 -1  0  0 -1  41  8  1
;
data footshape; set foot_mv;
   array k{3};
   do Shape = 1 to 3;
      count = k{Shape};
      output;
   end;
   drop k:;
run;
proc glimmix data=footshape method=quad;
   class sire;
   model Shape = yr b1 b2 b3 / s link=cumprobit dist=multinomial;
   random int / sub=sire s cl;
   ods output Solutionr=solr;
   freq count;
run;
ods select FitStatistics CovParms Covtests;
proc glimmix data=footshape method=quad;
   class sire;
   model Shape = yr b1 b2 b3 / link=cumprobit dist=multinomial;
   random int / sub=sire;
   covtest GLM;
   freq count;
run;
proc sort data=solr;
   by Estimate;
run;
data solr; set solr;
   length sire $2;
   obs  = _n_;
   sire = left(substr(Subject,6,2));
run;
proc sgplot data=solr;
   scatter x=obs y=estimate /
         markerchar  = sire
         yerrorupper = upper
         yerrorlower = lower;
   xaxis grid label='Sire Rank' values=(1 5 10 15 20 25 30);
   yaxis grid label='Predicted Sire Effect';
run;