Example 8 for PROC CATMOD
/****************************************************************/
/* S A S S A M P L E L I B R A R Y */
/* */
/* NAME: CATEX8 */
/* TITLE: Example 8 for PROC CATMOD */
/* PRODUCT: STAT */
/* SYSTEM: ALL */
/* KEYS: categorical data analysis */
/* PROCS: CATMOD */
/* DATA: */
/* */
/* SUPPORT: Bob Derr */
/* REF: SAS/STAT User's Guide, PROC CATMOD chapter */
/* MISC: */
/* */
/****************************************************************/
/*----------------------------------------------------------------
Example 8: Repeated Measures, Logistic Analysis of Growth Curve
Growth Curve Analysis
---------------------
Subjects from 2 diagnostic groups (mild or severe) are given
one of 2 treatments (std or new), and their response to
treatment (n=normal or a=abnormal) is recorded at each of 3
times (weeks 1, 2, and 4)
From: Koch et al. (1977)
----------------------------------------------------------------*/
title 'Growth Curve Analysis';
data growth2;
input Diagnosis $ Treatment $ week1 $ week2 $ week4 $ count @@;
datalines;
mild std n n n 16 severe std n n n 2
mild std n n a 13 severe std n n a 2
mild std n a n 9 severe std n a n 8
mild std n a a 3 severe std n a a 9
mild std a n n 14 severe std a n n 9
mild std a n a 4 severe std a n a 15
mild std a a n 15 severe std a a n 27
mild std a a a 6 severe std a a a 28
mild new n n n 31 severe new n n n 7
mild new n n a 0 severe new n n a 2
mild new n a n 6 severe new n a n 5
mild new n a a 0 severe new n a a 2
mild new a n n 22 severe new a n n 31
mild new a n a 2 severe new a n a 5
mild new a a n 9 severe new a a n 32
mild new a a a 0 severe new a a a 6
;
proc catmod data=growth2 order=data;
title2 'Reduced Logistic Model';
weight count;
population Diagnosis Treatment;
response logit;
model week1*week2*week4=(1 0 0 0, /* mild, std */
1 0 1 0,
1 0 2 0,
1 0 0 0, /* mild, new */
1 0 0 1,
1 0 0 2,
0 1 0 0, /* severe, std */
0 1 1 0,
0 1 2 0,
0 1 0 0, /* severe, new */
0 1 0 1,
0 1 0 2)
(1='Mild diagnosis, week 1',
2='Severe diagnosis, week 1',
3='Time effect for std trt',
4='Time effect for new trt')
/ freq design;
contrast 'Diagnosis effect, week 1' all_parms 1 -1 0 0;
contrast 'Equal time effects' all_parms 0 0 1 -1;
quit;