
An event risk of a population over a specified time period can be defined as the number of new events in the follow-up time period divided by the event-free population size at the beginning of the time period,
![\[ {\hat\gamma } = \frac{d}{\mathcal N} \]](images/statug_stdrate0051.png)
where
is the population size.
For a general population, the subsets (strata) might not be homogeneous enough to have a similar risk. Thus, the risk for each stratum should be computed separately to reflect this discrepancy. For a population that consists of K homogeneous strata (such as different age groups), the stratum-specific risk for the jth stratum in a population is computed as
![\[ {\hat\gamma }_ j = \frac{d_{j}}{{\mathcal N}_{j}} \]](images/statug_stdrate0053.png)
where
is the population size in the jth stratum of the population.
Assuming the number of events,
, has a binomial distribution, then a variance estimate of
is
![\[ V( {\hat\gamma }_ j ) = \frac{ {\hat\gamma }_ j (1-{\hat\gamma }_ j) }{{\mathcal N}_ j} \]](images/statug_stdrate0057.png)
By using the method of statistical differentials (Elandt-Johnson and Johnson 1980, pp. 70–71), the variance of the logarithm of risk can be estimated by
![\[ V( \mbox{log}( {\hat\gamma }_ j ) ) = \frac{1}{ {\hat\gamma }_{j}^{2} } \, V( {\hat\gamma }_{j} ) = \frac{1}{ {\hat\gamma }_{j}^{2} } \, \frac{ {\hat\gamma _{j}} \, (1-{\hat\gamma _{j}}) }{ {\mathcal N}_{j} } = \frac{ 1-{\hat\gamma _{j}} }{ {\hat\gamma }_{j} \, {\mathcal N}_{j} } = \frac{1}{ d_{j} } - \frac{1}{ {\mathcal N}_{j} } \]](images/statug_stdrate0058.png)
A
confidence interval for
based on a normal distribution is given by
![\[ \left( \; {\hat\gamma }_{j} - z \, \sqrt {V( {\hat\gamma }_{j} )} \, , \; \; {\hat\gamma }_{j} + z \, \sqrt {V( {\hat\gamma }_{j} )} \; \right) \]](images/statug_stdrate0060.png)
where
is the
quantile of the standard normal distribution.
A
confidence interval for
based on a normal distribution is given by
![\[ \left( \; \mbox{log}({\hat\gamma }_{j}) - z \, \sqrt {V( \mbox{log}({\hat\gamma }_{j}) )} \, , \; \; \mbox{log}({\hat\gamma }_{j}) + z \, \sqrt {V( \mbox{log}({\hat\gamma }_{j}) )} \; \right) \]](images/statug_stdrate0062.png)
where
is the
quantile of the standard normal distribution and the variance
.
Thus, a
confidence interval for
based on a lognormal distribution is given by
![\[ \left( \; {\hat\gamma }_{j} \; e^{ -z {\sqrt { \frac{1}{d_{j}} - \frac{1}{{\mathcal N}_{j}} }}} \, , \; \; {\hat\gamma }_{j} \; e^{ z {\sqrt { \frac{1}{d_{j}} - \frac{1}{{\mathcal N}_{j}} }}} \; \right) \]](images/statug_stdrate0064.png)
For rate estimates from two independent samples,
and
, a
confidence interval for the risk difference
is
![\[ \left( \; {\hat\gamma }_{dj} - z \, \sqrt {V( {\hat\gamma }_{dj} )} \, , \; \; {\hat\gamma }_{dj} + z \, \sqrt {V( {\hat\gamma }_{dj} )} \; \right) \]](images/statug_stdrate0068.png)
where
is the
quantile of the standard normal distribution and the variance
![\[ V({\hat\gamma }_{dj}) = V({\hat\gamma }_{1j}) + V({\hat\gamma }_{2j}) \]](images/statug_stdrate0069.png)
For rate estimates from two independent samples,
and
, a
confidence interval for the log risk ratio statistic
is
![\[ \left( \; \mbox{log} ({\hat\gamma }_{rj}) - z \, \sqrt {V( \mbox{log} ({\hat\gamma }_{rj}) )} \, , \; \; \mbox{log} ({\hat\gamma }_{rj}) + z \, \sqrt {V( \mbox{log} ({\hat\gamma }_{rj}) )} \; \right) \]](images/statug_stdrate0071.png)
where
is the
quantile of the standard normal distribution and the variance
![\[ V( \mbox{log} ({\hat\gamma }_{rj}) = V( \mbox{log} ({\hat\gamma }_{1j}) ) + V( \mbox{log} ({\hat\gamma }_{2j}) ) \]](images/statug_stdrate0072.png)
Thus, a
confidence interval for the risk ratio statistic
is given by
![\[ \left( \; \frac{{\hat\gamma }_{1j}}{{\hat\gamma }_{2j}} \; e^{ -z \sqrt {V( \mbox{log} ({\hat\gamma }_{rj}) ) } } \, , \; \; \frac{{\hat\gamma }_{1j}}{{\hat\gamma }_{2j}} \; e^{ z \sqrt {V( \mbox{log} ({\hat\gamma }_{rj}) ) } } \; \right) \]](images/statug_stdrate0074.png)
At stratum j, a stratum-specific standardized morbidity/mortality ratio is
![\[ {\mathcal R}_{j} = \; \frac{\, d_ j \, }{{\mathcal E}_ j} \]](images/statug_stdrate0045.png)
where
is the expected number of events.
With the risk
![\[ {\hat\gamma }_ j = \frac{d_{j}}{{\mathcal N}_{j}} \]](images/statug_stdrate0053.png)
SMR can be expressed as
![\[ {\mathcal R}_{j} = \; \frac{\, {\mathcal N}_ j \, }{{\mathcal E}_ j} \; {\hat\gamma }_ j \]](images/statug_stdrate0075.png)
Thus, a
confidence interval for
is given by
![\[ \left( \; \frac{\, {\mathcal N}_ j \, }{{\mathcal E}_ j} \; {\hat\gamma }_{jl} \, , \; \; \frac{\, {\mathcal N}_ j \, }{{\mathcal E}_ j} \; {\hat\gamma }_{ju} \; \right) \]](images/statug_stdrate0076.png)
where
is a
confidence interval for the risk
.