PROC LIFEREG assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed separately in Table 69.13 for a maximum likelihood analysis and in Table 69.14 for a Bayesian analysis. For more information about ODS, see Chapter 20: Using the Output Delivery System.
Table 69.13: ODS Tables Produced in PROC LIFEREG for a Classical Analysis
ODS Table Name |
Description |
Statement |
Option |
---|---|---|---|
ClassLevels |
Classification variable levels |
CLASS |
Default |
ConvergenceStatus |
Convergence status |
MODEL |
Default |
CorrB |
Parameter estimate correlation matrix |
MODEL |
CORRB |
CovB |
Parameter estimate covariance matrix |
MODEL |
COVB |
IterEM |
Iteration history for Turnbull algorithm |
PROBPLOT |
ITPRINTEM |
FitStatistics |
Fit statistics |
MODEL |
Default |
FitStatisticsUL |
Fit statistics for unlogged response |
MODEL |
DISTRIBUTION=WEIBULL, LOGNORMAL, LLOGISTIC, or GAMMA |
IterHistory |
Iteration history |
MODEL |
ITPRINT |
LagrangeStatistics |
Lagrange statistics |
MODEL |
NOINT | NOSCALE |
LastGrad |
Last evaluation of the gradient |
MODEL |
ITPRINT |
LastHess |
Last evaluation of the Hessian |
MODEL |
ITPRINT |
ModelInfo |
Model information |
MODEL |
Default |
NObs |
Number of observations |
MODEL |
Default |
ParameterEstimates |
Parameter estimates |
MODEL |
Default |
ParmInfo |
Parameter indices |
MODEL |
Default |
ProbabilityEstimates |
Nonparametric CDF estimates |
PROBPLOT |
PPOUT |
TConvergenceStatus |
Convergence status for Turnbull algorithm |
PROBPLOT |
Default |
Turnbull |
Probability estimates from Turnbull algorithm |
PROBPLOT |
ITPRINTEM |
Type3Analysis |
Type 3 tests |
MODEL |
Default |
Depending on the data.
Table 69.14: ODS Tables Produced in PROC LIFEREG for a Bayesian Analysis
ODS Table Name |
Description |
Statement |
Option |
---|---|---|---|
AutoCorr |
Autocorrelations of the posterior samples |
BAYES |
Default |
ClassLevels |
Classification variable levels |
CLASS |
Default |
CoeffPrior |
Prior distribution of the regression coefficients |
BAYES |
Default |
ConvergenceStatus |
Convergence status of maximum likelihood estimation |
MODEL |
Default |
Corr |
Correlation matrix of the posterior samples |
BAYES |
SUMMARY=CORR |
ESS |
Effective sample size |
BAYES |
Default |
FitStatistics |
Fit statistics |
BAYES |
Default |
Gelman |
Gelman and Rubin convergence diagnostics |
BAYES |
DIAG=GELMAN |
Geweke |
Geweke convergence diagnostics |
BAYES |
Default |
Heidelberger |
Heidelberger and Welch convergence diagnostics |
BAYES |
DIAG=HEIDELBERGER |
InitialValues |
Initial values of the Markov chains |
BAYES |
Default |
MCError |
Monte Carlo standard errors |
BAYES |
DIAG=MCSE |
ModelInfo |
Model information |
MODEL |
Default |
NObs |
Number of observations |
MODEL |
Default |
ParameterEstimates |
Maximum likelihood estimates of model parameters |
MODEL |
Default |
ParmPrior |
Prior distribution for scale and shape |
BAYES |
Default |
PostIntervals |
HPD and equal-tail intervals of the posterior samples |
BAYES |
Default |
PosteriorSample |
Posterior samples (for output data set only) |
BAYES |
|
PostSummaries |
Summary statistics of the posterior samples |
BAYES |
Default |
Raftery |
Raftery and Lewis convergence diagnostics |
BAYES |
DIAG=RAFTERY |
Depending on the data.