

Confidence intervals are computed for all model parameters and are reported in the "Analysis of Parameter Estimates" table.
The confidence coefficient can be specified with the ALPHA=
MODEL statement option, resulting in a
two-sided confidence coefficient. The default confidence coefficient is 95%, corresponding to
.
A two-sided
confidence interval
for the regression parameter
is based on the asymptotic normality of the maximum likelihood estimator
and is computed by
![\[ \beta _{iL}=\hat{\beta }_{i} - z_{1-\alpha /2}(\mr{SE}_{\hat{\beta }_{i}}) \]](images/statug_lifereg0176.png)
![\[ \beta _{iU}=\hat{\beta }_{i} + z_{1-\alpha /2}(\mr{SE}_{\hat{\beta }_{i}}) \]](images/statug_lifereg0177.png)
where
is the estimated standard error of
, and
is the
percentile of the standard normal distribution.
A two-sided
confidence interval
for the scale parameter
in the location-scale model is based on the asymptotic normality of the logarithm of the maximum likelihood estimator
, and is computed by
![\[ \sigma _{L}=\hat{\sigma }/\exp [z_{1-\alpha /2}\mr{(SE}_{\hat{\sigma }})/\hat{\sigma }] \]](images/statug_lifereg0183.png)
![\[ \sigma _{U}=\hat{\sigma }\exp [z_{1-\alpha /2}\mr{(SE}_{\hat{\sigma }})/\hat{\sigma }] \]](images/statug_lifereg0184.png)
See Meeker and Escobar (1998) for more information.
The Weibull distribution scale parameter
and shape parameter
are obtained by transforming the extreme-value location parameter
and scale parameter
:
![\[ \eta = \exp (\mu ) \]](images/statug_lifereg0187.png)
![\[ \beta = 1 / \sigma \]](images/statug_lifereg0188.png)
Consequently, two-sided
confidence intervals for the Weibull scale and shape parameters are computed as
![\[ [\eta _ L,\; \; \eta _ U ] = [\exp (\mu _ L),\; \; \exp (\mu _ U)] \]](images/statug_lifereg0189.png)
![\[ [\beta _ L,\; \; \beta _ U] = [1/\sigma _ U,\; \; 1/\sigma _ L] \]](images/statug_lifereg0190.png)
A two-sided
confidence interval for the three-parameter gamma shape parameter
is computed by
![\[ [\delta _ L,\; \; \delta _ U] = [ \hat{\delta } - z_{1-\alpha /2}(\mr{SE}_{\hat{\delta }}), \; \; \hat{\delta } + z_{1-\alpha /2}(\mr{SE}_{\hat{\delta }}) ] \]](images/statug_lifereg0191.png)