Let
denote the covariance function matrix of a random vector. Then, the sparsity-function estimates of
is
![\[ \widehat{\mbox{COV}}\left(\hat{\bbeta }(\tau )\right)=\left\{ \begin{array}{l l} \omega ^2(\tau , F)\bOmega ^{-1}/n & \mbox{for a linear model with iid errors}\\ \tau (1-\tau )\mb{H}_ n^{-}\bOmega \mb{H}_ n^{-})/n & \mbox{for a linear-in-parameter model with non-iid settings} \end{array} \right. \]](images/statug_hpqtr0082.png)
where
is the vector of the parameter estimates.
If you specify the CLB option in the MODEL
statement, PROC HPQUANTSELECT outputs the standard error, confidence limits, t value, and Pr >
probability for each
in the parameter estimates table. Table 59.5 summarizes these statistics for
.
Table 59.5: More Statistics for 
|
Statistic |
Definition |
|
|---|---|---|
|
Standard error: |
|
|
|
|
|
|
|
t value |
|
|
|
Pr > |
p-value of the t value |
Here
is the
element of
, and
denotes the
-level student’s t score with 1 degree of freedom.