The TRANSREG Procedure

Model Statement Usage

Here are some examples of model statements:

  • linear regression

    model identity(y) = identity(x);
    
  • a linear model with a nonlinear regression function

    model identity(y) = spline(x / nknots=5);
    
  • multiple regression

    model identity(y) = identity(x1-x5);
    
  • multiple regression with nonlinear transformations

    model spline(y / nknots=3) = spline(x1-x5 / nknots=3);
    
  • multiple regression with nonlinear but monotone transformations

    model mspline(y / nknots=3) = mspline(x1-x5 / nknots=3);
    
  • multivariate multiple regression

    model identity(y1-y4) = identity(x1-x5);
    
  • canonical correlation

    model identity(y1-y4) = identity(x1-x5) / method=canals;
    
  • redundancy analysis

    model identity(y1-y4) = identity(x1-x5) / method=redundancy;
    
  • preference mapping, vector model (Carroll, 1972)

    model identity(Attrib1-Attrib3) = identity(Dim1-Dim2);
    
  • preference mapping, ideal point model (Carroll, 1972)

    model identity(Attrib1-Attrib3) = point(Dim1-Dim2);
    
  • preference mapping, ideal point model, elliptical (Carroll, 1972)

    model identity(Attrib1-Attrib3) = epoint(Dim1-Dim2);
    
  • preference mapping, ideal point model, quadratic (Carroll, 1972)

    model identity(Attrib1-Attrib3) = qpoint(Dim1-Dim2);
    
  • metric conjoint analysis

    model identity(Subj1-Subj50) = class(a b c d e f / zero=sum);
    
  • nonmetric conjoint analysis

    model monotone(Subj1-Subj50) = class(a b c d e f / zero=sum);
    
  • main effects, two-way interaction

    model identity(y) = class(a|b);
    
  • less-than-full-rank model—main effects and two-way interaction are constrained to sum to zero

    model identity(y) = class(a|b / zero=sum);
    
  • main effects and all two-way interactions

    model identity(y) = class(a|b|c@2);
    
  • main effects and all two- and three-way interactions

    model identity(y) = class(a|b|c);
    
  • main effects and only the b*c two-way interaction

    model identity(y) = class(a b c b*c);
    
  • seven main effects, three two-way interactions

    model identity(y) = class(a b c d e f g a*b a*c a*d);
    
  • deviations-from-means (effects or $(1, 0, -1)$) coding, with an a reference level of ’1’ and a b reference level of ’2’

    model identity(y) = class(a|b / deviations zero='1' '2');
    
  • cell-means coding (implicit intercept)

    model identity(y) = class(a*b / zero=none);
    
  • reference cell model

    model identity(y) = class(a|b / zero='1' '1');
    
  • reference line with change in line parameters

    model identity(y) = class(a) | identity(x);
    
  • reference curve with change in curve parameters

    model identity(y) = class(a) | spline(x);
    
  • separate curves and intercepts

    model identity(y) = class(a / zero=none) | spline(x);
    
  • quantitative effects with interaction

    model identity(y) = identity(x1 | x2);
    
  • separate quantitative effects with interaction within each cell

    model identity(y) = class(a * b / zero=none) | identity(x1 | x2);