The data for this example are from Hemmerle and Hartley (1973) and are also used for an example in the VARCOMP procedure. The response variable consists of measurements from an oven experiment,
and the model contains a fixed effect A
and random effects B
and A
*B
.
The SAS statements are as follows:
data hh; input a b y @@; datalines; 1 1 237 1 1 254 1 1 246 1 2 178 1 2 179 2 1 208 2 1 178 2 1 187 2 2 146 2 2 145 2 2 141 3 1 186 3 1 183 3 2 142 3 2 125 3 2 136 ;
ods output ParmSearch=parms; proc mixed data=hh asycov mmeq mmeqsol covtest; class a b; model y = a / outp=predicted; random b a*b; lsmeans a; parms (17 to 20 by .1) (.3 to .4 by .005) (1.0); run; proc print data=predicted; run;
The ASYCOV option in the PROC MIXED statement requests the asymptotic variance matrix of the covariance parameter estimates. This matrix is the observed inverse Fisher information matrix, which equals , where is the Hessian matrix of the objective function evaluated at the final covariance parameter estimates. The MMEQ and MMEQSOL options in the PROC MIXED statement request that the mixed model equations and their solution be displayed.
The OUTP= option in the MODEL statement produces the data set predicted
, containing the predicted values. Least squares means (LSMEANS) are requested for A
. The PARMS and ODS statements are used to construct a data set containing the likelihood surface.
The results from this analysis are shown in Output 59.3.1–Output 59.3.13.
The “Model Information” table in Output 59.3.1 lists details about this variance components model.
Output 59.3.1: Model Information
Model Information | |
---|---|
Data Set | WORK.HH |
Dependent Variable | y |
Covariance Structure | Variance Components |
Estimation Method | REML |
Residual Variance Method | Profile |
Fixed Effects SE Method | Model-Based |
Degrees of Freedom Method | Containment |
The “Class Level Information” table in Output 59.3.2 lists the levels for A
and B
.
Output 59.3.2: Class Level Information
Class Level Information | ||
---|---|---|
Class | Levels | Values |
a | 3 | 1 2 3 |
b | 2 | 1 2 |
The “Dimensions” table in Output 59.3.3 reveals that is and is . Since there are no SUBJECT= effects, PROC MIXED considers the data to be effectively from one subject with 16 observations.
Output 59.3.3: Model Dimensions and Number of Observations
Dimensions | |
---|---|
Covariance Parameters | 3 |
Columns in X | 4 |
Columns in Z | 8 |
Subjects | 1 |
Max Obs Per Subject | 16 |
Number of Observations | |
---|---|
Number of Observations Read | 16 |
Number of Observations Used | 16 |
Number of Observations Not Used | 0 |
Only a portion of the “Parameter Search” table is shown in Output 59.3.4 because the full listing has 651 rows.
Output 59.3.4: Selected Results of Parameter Search
The Mixed Procedure |
CovP1 | CovP2 | CovP3 | Variance | Res Log Like | -2 Res Log Like |
---|---|---|---|---|---|
17.0000 | 0.3000 | 1.0000 | 80.1400 | -52.4699 | 104.9399 |
17.0000 | 0.3050 | 1.0000 | 80.0466 | -52.4697 | 104.9393 |
17.0000 | 0.3100 | 1.0000 | 79.9545 | -52.4694 | 104.9388 |
17.0000 | 0.3150 | 1.0000 | 79.8637 | -52.4692 | 104.9384 |
17.0000 | 0.3200 | 1.0000 | 79.7742 | -52.4691 | 104.9381 |
17.0000 | 0.3250 | 1.0000 | 79.6859 | -52.4690 | 104.9379 |
17.0000 | 0.3300 | 1.0000 | 79.5988 | -52.4689 | 104.9378 |
17.0000 | 0.3350 | 1.0000 | 79.5129 | -52.4689 | 104.9377 |
17.0000 | 0.3400 | 1.0000 | 79.4282 | -52.4689 | 104.9377 |
17.0000 | 0.3450 | 1.0000 | 79.3447 | -52.4689 | 104.9378 |
. | . | . | . | . | . |
. | . | . | . | . | . |
. | . | . | . | . | . |
20.0000 | 0.3550 | 1.0000 | 78.2003 | -52.4683 | 104.9366 |
20.0000 | 0.3600 | 1.0000 | 78.1201 | -52.4684 | 104.9368 |
20.0000 | 0.3650 | 1.0000 | 78.0409 | -52.4685 | 104.9370 |
20.0000 | 0.3700 | 1.0000 | 77.9628 | -52.4687 | 104.9373 |
20.0000 | 0.3750 | 1.0000 | 77.8857 | -52.4689 | 104.9377 |
20.0000 | 0.3800 | 1.0000 | 77.8096 | -52.4691 | 104.9382 |
20.0000 | 0.3850 | 1.0000 | 77.7345 | -52.4693 | 104.9387 |
20.0000 | 0.3900 | 1.0000 | 77.6603 | -52.4696 | 104.9392 |
20.0000 | 0.3950 | 1.0000 | 77.5871 | -52.4699 | 104.9399 |
20.0000 | 0.4000 | 1.0000 | 77.5148 | -52.4703 | 104.9406 |
As Output 59.3.5 shows, convergence occurs quickly because PROC MIXED starts from the best value from the grid search.
Output 59.3.5: Iteration History and Convergence Status
Iteration History | |||
---|---|---|---|
Iteration | Evaluations | -2 Res Log Like | Criterion |
1 | 2 | 104.93416367 | 0.00000000 |
Convergence criteria met. |
The “Covariance Parameter Estimates” table in Output 59.3.6 lists the variance components estimates. Note that B
is much more variable than A
*B
.
Output 59.3.6: Estimated Covariance Parameters
Covariance Parameter Estimates | ||||
---|---|---|---|---|
Cov Parm | Estimate | Standard Error | Z Value | Pr > Z |
b | 1464.36 | 2098.01 | 0.70 | 0.2426 |
a*b | 26.9581 | 59.6570 | 0.45 | 0.3257 |
Residual | 78.8426 | 35.3512 | 2.23 | 0.0129 |
The asymptotic covariance matrix in Output 59.3.7 also reflects the large variability of B
relative to A
*B
.
Output 59.3.7: Asymptotic Covariance Matrix of Covariance Parameters
Asymptotic Covariance Matrix of Estimates | ||||
---|---|---|---|---|
Row | Cov Parm | CovP1 | CovP2 | CovP3 |
1 | b | 4401640 | 1.2831 | -273.32 |
2 | a*b | 1.2831 | 3558.96 | -502.84 |
3 | Residual | -273.32 | -502.84 | 1249.71 |
As Output 59.3.8 shows, the PARMS likelihood ratio test (LRT) compares the best model from the grid search with the final fitted model. Since these models are nearly the same, the LRT is not significant.
Output 59.3.8: Fit Statistics and Likelihood Ratio Test
Fit Statistics | |
---|---|
-2 Res Log Likelihood | 104.9 |
AIC (smaller is better) | 110.9 |
AICC (smaller is better) | 113.6 |
BIC (smaller is better) | 107.0 |
PARMS Model Likelihood Ratio Test | ||
---|---|---|
DF | Chi-Square | Pr > ChiSq |
2 | 0.00 | 1.0000 |
The mixed model equations are analogous to the normal equations in the standard linear model. As Output 59.3.9 shows, for this example, rows 1–4 correspond to the fixed effects, rows 5–12 correspond to the random effects, and Col13 corresponds to the dependent variable.
Output 59.3.9: Mixed Model Equations
Mixed Model Equations | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Row | Effect | a | b | Col1 | Col2 | Col3 | Col4 | Col5 | Col6 | Col7 | Col8 | Col9 | Col10 | Col11 | Col12 | Col13 |
1 | Intercept | 0.2029 | 0.06342 | 0.07610 | 0.06342 | 0.1015 | 0.1015 | 0.03805 | 0.02537 | 0.03805 | 0.03805 | 0.02537 | 0.03805 | 36.4143 | ||
2 | a | 1 | 0.06342 | 0.06342 | 0.03805 | 0.02537 | 0.03805 | 0.02537 | 13.8757 | |||||||
3 | a | 2 | 0.07610 | 0.07610 | 0.03805 | 0.03805 | 0.03805 | 0.03805 | 12.7469 | |||||||
4 | a | 3 | 0.06342 | 0.06342 | 0.02537 | 0.03805 | 0.02537 | 0.03805 | 9.7917 | |||||||
5 | b | 1 | 0.1015 | 0.03805 | 0.03805 | 0.02537 | 0.1022 | 0.03805 | 0.03805 | 0.02537 | 21.2956 | |||||
6 | b | 2 | 0.1015 | 0.02537 | 0.03805 | 0.03805 | 0.1022 | 0.02537 | 0.03805 | 0.03805 | 15.1187 | |||||
7 | a*b | 1 | 1 | 0.03805 | 0.03805 | 0.03805 | 0.07515 | 9.3477 | ||||||||
8 | a*b | 1 | 2 | 0.02537 | 0.02537 | 0.02537 | 0.06246 | 4.5280 | ||||||||
9 | a*b | 2 | 1 | 0.03805 | 0.03805 | 0.03805 | 0.07515 | 7.2676 | ||||||||
10 | a*b | 2 | 2 | 0.03805 | 0.03805 | 0.03805 | 0.07515 | 5.4793 | ||||||||
11 | a*b | 3 | 1 | 0.02537 | 0.02537 | 0.02537 | 0.06246 | 4.6802 | ||||||||
12 | a*b | 3 | 2 | 0.03805 | 0.03805 | 0.03805 | 0.07515 | 5.1115 |
The solution matrix in Output 59.3.10 results from sweeping all but the last row of the mixed model equations matrix. The final column contains a solution vector for the fixed and random effects. The first four rows correspond to fixed effects and the last eight correspond to random effects.
Output 59.3.10: Solutions of the Mixed Model Equations
Mixed Model Equations Solution | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Row | Effect | a | b | Col1 | Col2 | Col3 | Col4 | Col5 | Col6 | Col7 | Col8 | Col9 | Col10 | Col11 | Col12 | Col13 |
1 | Intercept | 761.84 | -29.7718 | -29.6578 | -731.14 | -733.22 | -0.4680 | 0.4680 | -0.5257 | 0.5257 | -12.4663 | -14.4918 | 159.61 | |||
2 | a | 1 | -29.7718 | 59.5436 | 29.7718 | -2.0764 | 2.0764 | -14.0239 | -12.9342 | 1.0514 | -1.0514 | 12.9342 | 14.0239 | 53.2049 | ||
3 | a | 2 | -29.6578 | 29.7718 | 56.2773 | -1.0382 | 1.0382 | 0.4680 | -0.4680 | -12.9534 | -14.0048 | 12.4663 | 14.4918 | 7.8856 | ||
4 | a | 3 | ||||||||||||||
5 | b | 1 | -731.14 | -2.0764 | -1.0382 | 741.63 | 722.73 | -4.2598 | 4.2598 | -4.7855 | 4.7855 | -4.2598 | 4.2598 | 26.8837 | ||
6 | b | 2 | -733.22 | 2.0764 | 1.0382 | 722.73 | 741.63 | 4.2598 | -4.2598 | 4.7855 | -4.7855 | 4.2598 | -4.2598 | -26.8837 | ||
7 | a*b | 1 | 1 | -0.4680 | -14.0239 | 0.4680 | -4.2598 | 4.2598 | 22.8027 | 4.1555 | 2.1570 | -2.1570 | 1.9200 | -1.9200 | 3.0198 | |
8 | a*b | 1 | 2 | 0.4680 | -12.9342 | -0.4680 | 4.2598 | -4.2598 | 4.1555 | 22.8027 | -2.1570 | 2.1570 | -1.9200 | 1.9200 | -3.0198 | |
9 | a*b | 2 | 1 | -0.5257 | 1.0514 | -12.9534 | -4.7855 | 4.7855 | 2.1570 | -2.1570 | 22.5560 | 4.4021 | 2.1570 | -2.1570 | -1.7134 | |
10 | a*b | 2 | 2 | 0.5257 | -1.0514 | -14.0048 | 4.7855 | -4.7855 | -2.1570 | 2.1570 | 4.4021 | 22.5560 | -2.1570 | 2.1570 | 1.7134 | |
11 | a*b | 3 | 1 | -12.4663 | 12.9342 | 12.4663 | -4.2598 | 4.2598 | 1.9200 | -1.9200 | 2.1570 | -2.1570 | 22.8027 | 4.1555 | -0.8115 | |
12 | a*b | 3 | 2 | -14.4918 | 14.0239 | 14.4918 | 4.2598 | -4.2598 | -1.9200 | 1.9200 | -2.1570 | 2.1570 | 4.1555 | 22.8027 | 0.8115 |
The A
factor is significant at the 5% level (Output 59.3.11).
Output 59.3.11: Tests of Fixed Effects
Type 3 Tests of Fixed Effects | ||||
---|---|---|---|---|
Effect | Num DF | Den DF | F Value | Pr > F |
a | 2 | 2 | 28.00 | 0.0345 |
Output 59.3.12 shows that the significance of A
appears to be from the difference between its first level and its other two levels.
Output 59.3.12: Least Squares Means for A Effect
Least Squares Means | ||||||
---|---|---|---|---|---|---|
Effect | a | Estimate | Standard Error | DF | t Value | Pr > |t| |
a | 1 | 212.82 | 27.6014 | 2 | 7.71 | 0.0164 |
a | 2 | 167.50 | 27.5463 | 2 | 6.08 | 0.0260 |
a | 3 | 159.61 | 27.6014 | 2 | 5.78 | 0.0286 |
Output 59.3.13 lists the predicted values from the model. These values are the sum of the fixed-effects estimates and the empirical best linear unbiased predictors (EBLUPs) of the random effects.
Output 59.3.13: Predicted Values
Obs | a | b | y | Pred | StdErrPred | DF | Alpha | Lower | Upper | Resid |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 237 | 242.723 | 4.72563 | 10 | 0.05 | 232.193 | 253.252 | -5.7228 |
2 | 1 | 1 | 254 | 242.723 | 4.72563 | 10 | 0.05 | 232.193 | 253.252 | 11.2772 |
3 | 1 | 1 | 246 | 242.723 | 4.72563 | 10 | 0.05 | 232.193 | 253.252 | 3.2772 |
4 | 1 | 2 | 178 | 182.916 | 5.52589 | 10 | 0.05 | 170.603 | 195.228 | -4.9159 |
5 | 1 | 2 | 179 | 182.916 | 5.52589 | 10 | 0.05 | 170.603 | 195.228 | -3.9159 |
6 | 2 | 1 | 208 | 192.670 | 4.70076 | 10 | 0.05 | 182.196 | 203.144 | 15.3297 |
7 | 2 | 1 | 178 | 192.670 | 4.70076 | 10 | 0.05 | 182.196 | 203.144 | -14.6703 |
8 | 2 | 1 | 187 | 192.670 | 4.70076 | 10 | 0.05 | 182.196 | 203.144 | -5.6703 |
9 | 2 | 2 | 146 | 142.330 | 4.70076 | 10 | 0.05 | 131.856 | 152.804 | 3.6703 |
10 | 2 | 2 | 145 | 142.330 | 4.70076 | 10 | 0.05 | 131.856 | 152.804 | 2.6703 |
11 | 2 | 2 | 141 | 142.330 | 4.70076 | 10 | 0.05 | 131.856 | 152.804 | -1.3297 |
12 | 3 | 1 | 186 | 185.687 | 5.52589 | 10 | 0.05 | 173.374 | 197.999 | 0.3134 |
13 | 3 | 1 | 183 | 185.687 | 5.52589 | 10 | 0.05 | 173.374 | 197.999 | -2.6866 |
14 | 3 | 2 | 142 | 133.542 | 4.72563 | 10 | 0.05 | 123.013 | 144.072 | 8.4578 |
15 | 3 | 2 | 125 | 133.542 | 4.72563 | 10 | 0.05 | 123.013 | 144.072 | -8.5422 |
16 | 3 | 2 | 136 | 133.542 | 4.72563 | 10 | 0.05 | 123.013 | 144.072 | 2.4578 |
To plot the likelihood surface by using ODS Graphics, use the following statements:
proc template; define statgraph surface; begingraph; layout overlay3d; surfaceplotparm x=CovP1 y=CovP2 z=ResLogLike; endlayout; endgraph; end; run; proc sgrender data=parms template=surface; run;
The results from this plot are shown in Output 59.3.14. The peak of the surface is the REML estimates for the B
and A
*B
variance components.