The LOGISTIC Procedure

References

  • Agresti, A. (1984), Analysis of Ordinal Categorical Data, New York: John Wiley & Sons.

  • Agresti, A. (1990), Categorical Data Analysis, New York: John Wiley & Sons.

  • Agresti, A. (1992), “A Survey of Exact Inference for Contingency Tables,” Statistical Science, 7, 131–177.

  • Agresti, A. (2002), Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

  • Aitchison, J. and Silvey, S. (1957), “The Generalization of Probit Analysis to the Case of Multiple Responses,” Biometrika, 44, 131–140.

  • Albert, A. and Anderson, J. A. (1984), “On the Existence of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika, 71, 1–10.

  • Allison, P. D. (1982), “Discrete-Time Methods for the Analysis of Event Histories,” in S. Leinhardt, ed., Sociological Methods and Research, 61–98, San Francisco: Jossey-Bass.

  • Allison, P. D. (1999), Logistic Regression Using the SAS System: Theory and Application, Cary, NC: SAS Institute Inc.

  • Ashford, J. R. (1959), “An Approach to the Analysis of Data for Semi-quantal Responses in Biology Response,” Biometrics, 15, 573–581.

  • Bartolucci, A. A. and Fraser, M. D. (1977), “Comparative Step-Up and Composite Test for Selecting Prognostic Indicator Associated with Survival,” Biometrical Journal, 19, 437–448.

  • Breslow, N. E. (1982), “Covariance Adjustment of Relative-Risk Estimates in Matched Studies,” Biometrics, 38, 661–672.

  • Breslow, N. E. and Day, N. E. (1980), The Analysis of Case-Control Studies, Statistical Methods in Cancer Research, IARC Scientific Publications, vol. 1, no. 32, Lyon: International Agency for Research on Cancer.

  • Brier, G. W. (1950), “Verification of Forecasts Expressed in Terms of Probability,” Monthly Weather Review, 78, 1–3.

  • Burnham, K. P. and Anderson, D. R. (1998), Model Selection and Inference: A Practical Information-Theoretic Approach, New York: Springer-Verlag.

  • Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge University Press.

  • Collett, D. (2003), Modelling Binary Data, 2nd Edition, London: Chapman & Hall.

  • Cook, R. D. and Weisberg, S. (1982), Residuals and Influence in Regression, New York: Chapman & Hall.

  • Cox, D. R. (1970), The Analysis of Binary Data, New York: Chapman & Hall.

  • Cox, D. R. (1972), “Regression Models and Life Tables,” Journal of the Royal Statistical Society, Series B, 20, 187–220, with discussion.

  • Cox, D. R. and Snell, E. J. (1989), The Analysis of Binary Data, 2nd Edition, London: Chapman & Hall.

  • DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988), “Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach,” Biometrics, 44, 837–845.

  • Draper, C. C., Voller, A., and Carpenter, R. G. (1972), “The Epidemiologic Interpretation of Serologic Data in Malaria,” American Journal of Tropical Medicine and Hygiene, 21, 696–703.

  • Finney, D. J. (1947), “The Estimation from Individual Records of the Relationship between Dose and Quantal Response,” Biometrika, 34, 320–334.

  • Firth, D. (1993), “Bias Reduction of Maximum Likelihood Estimates,” Biometrika, 80, 27–38.

  • Fleiss, J. L. (1981), Statistical Methods for Rates and Proportions, 2nd Edition, New York: John Wiley & Sons.

  • Freeman, D. H., Jr. (1987), Applied Categorical Data Analysis, New York: Marcel Dekker.

  • Furnival, G. M. and Wilson, R. W. (1974), “Regression by Leaps and Bounds,” Technometrics, 16, 499–511.

  • Gail, M. H., Lubin, J. H., and Rubinstein, L. V. (1981), “Likelihood Calculations for Matched Case-Control Studies and Survival Studies with Tied Death Times,” Biometrika, 68, 703–707.

  • Hanley, J. A. and McNeil, B. J. (1982), “The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve,” Radiology, 143, 29–36.

  • Harrell, F. E. (1986), “The LOGIST Procedure,” in SUGI Supplemental Library Guide, Version 5 Edition, Cary, NC: SAS Institute Inc.

  • Heinze, G. (1999), The Application of Firth’s Procedure to Cox and Logistic Regression, Technical Report 10/1999, updated in January 2001, Section of Clinical Biometrics, Department of Medical Computer Sciences, University of Vienna.

  • Heinze, G. (2006), “A Comparative Investigation of Methods for Logistic Regression with Separated or Nearly Separated Data,” Statistics in Medicine, 25, 4216–4226.

  • Heinze, G. and Schemper, M. (2002), “A Solution to the Problem of Separation in Logistic Regression,” Statistics in Medicine, 21, 2409–2419.

  • Hilbe, J. M. (2009), Logistic Regression Models, London: Chapman & Hall/CRC.

  • Hirji, K. F. (1992), “Computing Exact Distributions for Polytomous Response Data,” Journal of the American Statistical Association, 87, 487–492.

  • Hirji, K. F., Mehta, C. R., and Patel, N. R. (1987), “Computing Distributions for Exact Logistic Regression,” Journal of the American Statistical Association, 82, 1110–1117.

  • Hirji, K. F., Mehta, C. R., and Patel, N. R. (1988), “Exact Inference for Matched Case-Control Studies,” Biometrics, 44, 803–814.

  • Hirji, K. F., Tsiatis, A. A., and Mehta, C. R. (1989), “Median Unbiased Estimation for Binary Data,” American Statistician, 43, 7–11.

  • Hosmer, D. W., Jr. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd Edition, New York: John Wiley & Sons.

  • Howard, S. (1972), “Remark on the Paper by Cox (’Regression Methods and Life Tables’),” Journal of the Royal Statistical Society, Series B, 34, 187–220.

  • Hurvich, C. M. and Tsai, C.-L. (1993), “A Corrected Akaike Information Criterion for Vector Autoregressive Model Selection,” Journal of Time Series Analysis, 14, 271–279.

  • Izrael, D., Battaglia, A. A., Hoaglin, D. C., and Battaglia, M. P. (2002), “Use of the ROC Curve and the Bootstrap in Comparing Weighted Logistic Regression Models,” in Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference, Cary, NC: SAS Institute Inc.
    URL http://www2.sas.com/proceedings/sugi27/p248-27.pdf

  • Lachin, J. M. (2000), Biostatistical Methods: The Assessment of Relative Risks, New York: John Wiley & Sons.

  • Lamotte, L. R. (2002), personal communication, June.

  • Lancaster, H. O. (1961), “Significance Tests in Discrete Distributions,” Journal of the American Statistical Association, 56, 223–234.

  • Lawless, J. F. and Singhal, K. (1978), “Efficient Screening of Nonnormal Regression Models,” Biometrics, 34, 318–327.

  • Lee, E. T. (1974), “A Computer Program for Linear Logistic Regression Analysis,” Computer Programs in Biomedicine, 4, 80–92.

  • McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd Edition, London: Chapman & Hall.

  • McFadden, D. (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. Zarembka, ed., Frontiers in Econometrics, New York: Academic Press.

  • Mehta, C. R. and Patel, N. R. (1995), “Exact Logistic Regression: Theory and Examples,” Statistics in Medicine, 14, 2143–2160.

  • Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1992), “Exact Stratified Linear Rank Tests for Ordered Categorical and Binary Data,” Journal of Computational and Graphical Statistics, 1, 21–40.

  • Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (2000), “Efficient Monte Carlo Methods for Conditional Logistic Regression,” Journal of the American Statistical Association, 95, 99–108.

  • Moolgavkar, S. H., Lustbader, E. D., and Venzon, D. J. (1985), “Assessing the Adequacy of the Logistic Regression Model for Matched Case-Control Studies,” Statistics in Medicine, 4, 425–435.

  • Murphy, A. H. (1973), “A New Vector Partition of the Probability Score,” Journal of Applied Meterology, 12, 595–600.

  • Naessens, J. M., Offord, K. P., Scott, W. F., and Daood, S. L. (1986), “The MCSTRAT Procedure,” in SUGI Supplemental Library User’s Guide, Version 5 Edition, 307–328, Cary, NC: SAS Institute Inc.

  • Nagelkerke, N. J. D. (1991), “A Note on a General Definition of the Coefficient of Determination,” Biometrika, 78, 691–692.

  • Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,” Journal of the Royal Statistical Society, Series A, 135, 370–384.

  • Peterson, B. L. and Harrell, F. E. (1990), “Partial Proportional Odds Models for Ordinal Response Variables,” Journal of the Royal Statistical Society, Series B, 39, 205–217.

  • Pregibon, D. (1981), “Logistic Regression Diagnostics,” Annals of Statistics, 9, 705–724.

  • Pregibon, D. (1984), “Data Analytic Methods for Matched Case-Control Studies,” Biometrics, 40, 639–651.

  • Prentice, R. L. and Gloeckler, L. A. (1978), “Regression Analysis of Grouped Survival Data with Applications to Breast Cancer Data,” Biometrics, 34, 57–67.

  • Press, S. J. and Wilson, S. (1978), “Choosing between Logistic Regression and Discriminant Analysis,” Journal of the American Statistical Association, 73, 699–705.

  • Santner, T. J. and Duffy, D. E. (1986), “A Note on A. Albert and J. A. Anderson’s Conditions for the Existence of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika, 73, 755–758.

  • SAS Institute Inc. (1995), Logistic Regression Examples Using the SAS System, Cary, NC: SAS Institute Inc.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2000), Categorical Data Analysis Using the SAS System, 2nd Edition, Cary, NC: SAS Institute Inc.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2012), Categorical Data Analysis Using SAS, 3rd Edition, Cary, NC: SAS Institute Inc.

  • Storer, B. E. and Crowley, J. (1985), “A Diagnostic for Cox Regression and General Conditional Likelihoods,” Journal of the American Statistical Association, 80, 139–147.

  • Venzon, D. J. and Moolgavkar, S. H. (1988), “A Method for Computing Profile-Likelihood Based Confidence Intervals,” Applied Statistics, 37, 87–94.

  • Vollset, S. E., Hirji, K. F., and Afifi, A. A. (1991), “Evaluation of Exact and Asymptotic Interval Estimators in Logistic Analysis of Matched Case-Control Studies,” Biometrics, 47, 1311–1325.

  • Walker, S. H. and Duncan, D. B. (1967), “Estimation of the Probability of an Event as a Function of Several Independent Variables,” Biometrika, 54, 167–179.

  • Williams, D. A. (1982), “Extra-binomial Variation in Logistic Linear Models,” Applied Statistics, 31, 144–148.