The ADAPTIVEREG Procedure (Experimental)

References

  • Asuncion, A. and Newman, D. J. (2007), “UCI Machine Learning Repository,” http://archive.ics.uci.edu/ml/.

  • Bellman, R. E. (1961), Adaptive Control Processes, Princeton, NJ: Princeton University Press.

  • Bowman, A. W. and Azzalini, A. (1997), Applied Smoothing Techniques for Data Analysis, New York: Oxford University Press.

  • Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984), Classification and Regression Trees, Belmont, CA: Wadsworth.

  • Buja, A., Duffy, D., Hastie, T. J., and Tibshirani, R. (1991), “Discussion: Multivariate Adaptive Regression Splines,” Annals of Statistics, 19, 93–99.

  • Craven, P. and Wahba, G. (1979), “Smoothing Noisy Data with Spline Functions,” Numerical Mathematics, 31, 377–403.

  • Friedman, J. H. (1991a), Estimating Functions of Mixed Ordinal and Categorical Variables Using Adaptive Splines, Technical report, Stanford University.

  • Friedman, J. H. (1991b), “Multivariate Adaptive Regression Splines,” Annals of Statistics, 19, 1–67.

  • Friedman, J. H. (1993), Fast MARS, Technical report, Stanford University.

  • Gu, C., Bates, D. M., Chen, Z., and Wahba, G. (1990), “The Computation of GCV Function through Householder Tridiagonalization with Application to the Fitting of Interaction Splines Models,” SIAM Journal on Matrix Analysis and Applications, 10, 457–480.

  • Hastie, T. J. and Tibshirani, R. J. (1990), Generalized Additive Models, New York: Chapman & Hall.

  • Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001), The Elements of Statistical Learning, New York: Springer-Verlag.

  • Owen, A. (1991), “Discussion of "Multivariate Adaptive Regression Splines" by J. H. Friedman,” Annals of Statistics, 19, 102–112.

  • Smith, P. L. (1982), Curve Fitting and Modeling with Splines Using Statistical Variable Selection Techniques, Technical report, NASA Langley Research Center.