The CALIS Procedure |
A second-order confirmatory factor analysis model is applied to a correlation matrix of Thurstone reported by McDonald (1985). Using the LINEQS statement, the three-term second-order factor analysis model is specified in equations notation. The first-order loadings for the three factors, f1, f2, and f3, each refer to three variables, X1-X3, X4-X6, and X7-X9. One second-order factor, f4, reflects the correlations among the three first-order factors. The second-order factor correlation matrix P is defined as a identity matrix. Choosing the second-order uniqueness matrix U2 as a diagonal matrix with parameters U21-U23 gives an unidentified model. To compute identified maximum likelihood estimates, the matrix U2 is defined as a identity matrix. The following statements generate results that are partially displayed in Output 25.3.1 through Output 25.3.4:
data Thurst(TYPE=CORR); title "Example of THURSTONE resp. McDONALD (1985, p.57, p.105)"; _TYPE_ = 'CORR'; Input _NAME_ $ Obs1-Obs9; label Obs1='Sentences' Obs2='Vocabulary' Obs3='Sentence Completion' Obs4='First Letters' Obs5='Four-letter Words' Obs6='Suffices' Obs7='Letter series' Obs8='Pedigrees' Obs9='Letter Grouping'; datalines; Obs1 1. . . . . . . . . Obs2 .828 1. . . . . . . . Obs3 .776 .779 1. . . . . . . Obs4 .439 .493 .460 1. . . . . . Obs5 .432 .464 .425 .674 1. . . . . Obs6 .447 .489 .443 .590 .541 1. . . . Obs7 .447 .432 .401 .381 .402 .288 1. . . Obs8 .541 .537 .534 .350 .367 .320 .555 1. . Obs9 .380 .358 .359 .424 .446 .325 .598 .452 1. ;
proc calis data=Thurst method=max edf=212 pestim se; lineqs Obs1 = X1 F1 + E1, Obs2 = X2 F1 + E2, Obs3 = X3 F1 + E3, Obs4 = X4 F2 + E4, Obs5 = X5 F2 + E5, Obs6 = X6 F2 + E6, Obs7 = X7 F3 + E7, Obs8 = X8 F3 + E8, Obs9 = X9 F3 + E9, F1 = X10 F4 + E10, F2 = X11 F4 + E11, F3 = X12 F4 + E12; std F4 = 1., E1-E9 = U11-U19, E10-E12 = 3 * 1.; bounds 0. <= U11-U19; run;
Optimization Start | |||
---|---|---|---|
Active Constraints | 0 | Objective Function | 0.7151823452 |
Max Abs Gradient Element | 0.4067179803 | Radius | 2.2578762496 |
Iteration | Restarts | Function Calls |
Active Constraints |
Objective Function |
Objective Function Change |
Max Abs Gradient Element |
Lambda | Ratio Between Actual and Predicted Change |
||
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 2 | 0 | 0.23113 | 0.4840 | 0.1299 | 0 | 1.363 | ||
2 | 0 | 3 | 0 | 0.18322 | 0.0479 | 0.0721 | 0 | 1.078 | ||
3 | 0 | 4 | 0 | 0.18051 | 0.00271 | 0.0200 | 0 | 1.006 | ||
4 | 0 | 5 | 0 | 0.18022 | 0.000289 | 0.00834 | 0 | 1.093 | ||
5 | 0 | 6 | 0 | 0.18018 | 0.000041 | 0.00251 | 0 | 1.201 | ||
6 | 0 | 7 | 0 | 0.18017 | 6.523E-6 | 0.00114 | 0 | 1.289 | ||
7 | 0 | 8 | 0 | 0.18017 | 1.085E-6 | 0.000388 | 0 | 1.347 | ||
8 | 0 | 9 | 0 | 0.18017 | 1.853E-7 | 0.000173 | 0 | 1.380 | ||
9 | 0 | 10 | 0 | 0.18017 | 3.208E-8 | 0.000063 | 0 | 1.399 | ||
10 | 0 | 11 | 0 | 0.18017 | 5.593E-9 | 0.000028 | 0 | 1.408 | ||
11 | 0 | 12 | 0 | 0.18017 | 9.79E-10 | 0.000011 | 0 | 1.414 |
Fit Function | 0.1802 |
---|---|
Goodness of Fit Index (GFI) | 0.9596 |
GFI Adjusted for Degrees of Freedom (AGFI) | 0.9242 |
Root Mean Square Residual (RMR) | 0.0436 |
Standardized Root Mean Square Residual (SRMR) | 0.0436 |
Parsimonious GFI (Mulaik, 1989) | 0.6397 |
Chi-Square | 38.1963 |
Chi-Square DF | 24 |
Pr > Chi-Square | 0.0331 |
Independence Model Chi-Square | 1101.9 |
Independence Model Chi-Square DF | 36 |
RMSEA Estimate | 0.0528 |
RMSEA 90% Lower Confidence Limit | 0.0153 |
RMSEA 90% Upper Confidence Limit | 0.0831 |
ECVI Estimate | 0.3881 |
ECVI 90% Lower Confidence Limit | . |
ECVI 90% Upper Confidence Limit | 0.4888 |
Probability of Close Fit | 0.4088 |
Bentler's Comparative Fit Index | 0.9867 |
Normal Theory Reweighted LS Chi-Square | 40.1947 |
Akaike's Information Criterion | -9.8037 |
Bozdogan's (1987) CAIC | -114.4747 |
Schwarz's Bayesian Criterion | -90.4747 |
McDonald's (1989) Centrality | 0.9672 |
Bentler & Bonett's (1980) Non-normed Index | 0.9800 |
Bentler & Bonett's (1980) NFI | 0.9653 |
James, Mulaik, & Brett (1982) Parsimonious NFI | 0.6436 |
Z-Test of Wilson & Hilferty (1931) | 1.8373 |
Bollen (1986) Normed Index Rho1 | 0.9480 |
Bollen (1988) Non-normed Index Delta2 | 0.9868 |
Hoelter's (1983) Critical N | 204 |
Obs1 | = | 0.5151 | * | F1 | + | 1.0000 | E1 | |
Std Err | 0.0629 | X1 | ||||||
t Value | 8.1868 | |||||||
Obs2 | = | 0.5203 | * | F1 | + | 1.0000 | E2 | |
Std Err | 0.0634 | X2 | ||||||
t Value | 8.2090 | |||||||
Obs3 | = | 0.4874 | * | F1 | + | 1.0000 | E3 | |
Std Err | 0.0608 | X3 | ||||||
t Value | 8.0151 | |||||||
Obs4 | = | 0.5211 | * | F2 | + | 1.0000 | E4 | |
Std Err | 0.0611 | X4 | ||||||
t Value | 8.5342 | |||||||
Obs5 | = | 0.4971 | * | F2 | + | 1.0000 | E5 | |
Std Err | 0.0590 | X5 | ||||||
t Value | 8.4213 | |||||||
Obs6 | = | 0.4381 | * | F2 | + | 1.0000 | E6 | |
Std Err | 0.0560 | X6 | ||||||
t Value | 7.8283 | |||||||
Obs7 | = | 0.4524 | * | F3 | + | 1.0000 | E7 | |
Std Err | 0.0660 | X7 | ||||||
t Value | 6.8584 | |||||||
Obs8 | = | 0.4173 | * | F3 | + | 1.0000 | E8 | |
Std Err | 0.0622 | X8 | ||||||
t Value | 6.7135 | |||||||
Obs9 | = | 0.4076 | * | F3 | + | 1.0000 | E9 | |
Std Err | 0.0613 | X9 | ||||||
t Value | 6.6484 |
F1 | = | 1.4438 | * | F4 | + | 1.0000 | E10 | |
Std Err | 0.2565 | X10 | ||||||
t Value | 5.6282 | |||||||
F2 | = | 1.2538 | * | F4 | + | 1.0000 | E11 | |
Std Err | 0.2114 | X11 | ||||||
t Value | 5.9320 | |||||||
F3 | = | 1.4065 | * | F4 | + | 1.0000 | E12 | |
Std Err | 0.2689 | X12 | ||||||
t Value | 5.2307 |
Variances of Exogenous Variables | ||||
---|---|---|---|---|
Variable | Parameter | Estimate | Standard Error |
t Value |
F4 | 1.00000 | |||
E1 | U11 | 0.18150 | 0.02848 | 6.37 |
E2 | U12 | 0.16493 | 0.02777 | 5.94 |
E3 | U13 | 0.26713 | 0.03336 | 8.01 |
E4 | U14 | 0.30150 | 0.05102 | 5.91 |
E5 | U15 | 0.36450 | 0.05264 | 6.93 |
E6 | U16 | 0.50642 | 0.05963 | 8.49 |
E7 | U17 | 0.39032 | 0.05934 | 6.58 |
E8 | U18 | 0.48138 | 0.06225 | 7.73 |
E9 | U19 | 0.50509 | 0.06333 | 7.98 |
E10 | 1.00000 | |||
E11 | 1.00000 | |||
E12 | 1.00000 |
Obs1 | = | 0.9047 | * | F1 | + | 0.4260 | E1 | |
X1 | ||||||||
Obs2 | = | 0.9138 | * | F1 | + | 0.4061 | E2 | |
X2 | ||||||||
Obs3 | = | 0.8561 | * | F1 | + | 0.5168 | E3 | |
X3 | ||||||||
Obs4 | = | 0.8358 | * | F2 | + | 0.5491 | E4 | |
X4 | ||||||||
Obs5 | = | 0.7972 | * | F2 | + | 0.6037 | E5 | |
X5 | ||||||||
Obs6 | = | 0.7026 | * | F2 | + | 0.7116 | E6 | |
X6 | ||||||||
Obs7 | = | 0.7808 | * | F3 | + | 0.6248 | E7 | |
X7 | ||||||||
Obs8 | = | 0.7202 | * | F3 | + | 0.6938 | E8 | |
X8 | ||||||||
Obs9 | = | 0.7035 | * | F3 | + | 0.7107 | E9 | |
X9 |
F1 | = | 0.8221 | * | F4 | + | 0.5694 | E10 | |
X10 | ||||||||
F2 | = | 0.7818 | * | F4 | + | 0.6235 | E11 | |
X11 | ||||||||
F3 | = | 0.8150 | * | F4 | + | 0.5794 | E12 | |
X12 |
Squared Multiple Correlations | ||||
---|---|---|---|---|
Variable | Error Variance | Total Variance | R-Square | |
1 | Obs1 | 0.18150 | 1.00000 | 0.8185 |
2 | Obs2 | 0.16493 | 1.00000 | 0.8351 |
3 | Obs3 | 0.26713 | 1.00000 | 0.7329 |
4 | Obs4 | 0.30150 | 1.00000 | 0.6985 |
5 | Obs5 | 0.36450 | 1.00000 | 0.6355 |
6 | Obs6 | 0.50642 | 1.00000 | 0.4936 |
7 | Obs7 | 0.39032 | 1.00000 | 0.6097 |
8 | Obs8 | 0.48138 | 1.00000 | 0.5186 |
9 | Obs9 | 0.50509 | 1.00000 | 0.4949 |
10 | F1 | 1.00000 | 3.08452 | 0.6758 |
11 | F2 | 1.00000 | 2.57213 | 0.6112 |
12 | F3 | 1.00000 | 2.97832 | 0.6642 |
To compute McDonald’s unidentified model, you would have to change the STD and BOUNDS statements to include three more parameters:
std F4 = 1., E1-E9 = U11-U19, E10-E12 = U21-U23; bounds 0. <= U11-U19, 0. <= U21-U23;
The unidentified model is indicated in the output by an analysis of the linear dependencies in the approximate Hessian matrix (not shown). Because the information matrix is singular, standard errors are computed based on a Moore-Penrose inverse. The results computed by PROC CALIS differ from those reported by McDonald (1985). In the case of an unidentified model, the parameter estimates are not unique.
To specify the identified model by using the COSAN model statement, you can use the following statements:
proc calis data=Thurst method=max edf=212 pestim se; cosan F1(3) * F2(1) * P(1,Ide) + F1(3) * U2(3,Ide) + U1(9,Dia); matrix F1 [ ,1] = X1-X3, [ ,2] = 3 * 0. X4-X6, [ ,3] = 6 * 0. X7-X9; matrix F2 [ ,1] = X10-X12; matrix U1 [1,1] = U11-U19; bounds 0. <= U11-U19; run;
Because PROC CALIS cannot compute initial estimates for a model specified by the general COSAN statement, this analysis might require more iterations than one that uses the LINEQS statement, depending on the precision of the processor.
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.