Previous Page | Next Page

The CALIS Procedure

Example 25.2 Simultaneous Equations with Intercept

The demand-and-supply food example of Kmenta (1971, pp. 565, 582) is used to illustrate the use of PROC CALIS for the estimation of intercepts and coefficients of simultaneous equations. The model is specified by two simultaneous equations containing two endogenous variables and and three exogenous variables , , and ,

     
     

for , ..., .

The LINEQS statement requires that each endogenous variable appear on the left-hand side of exactly one equation. Instead of analyzing the system

     

PROC CALIS analyzes the equivalent system

     

with . This requires that one of the preceding equations be solved for . Solving the second equation for yields

     

You can estimate the intercepts of a system of simultaneous equations by applying PROC CALIS to the uncorrected covariance (UCOV) matrix of the data set that is augmented by an additional constant variable with the value 1. In the following statements, the uncorrected covariance matrix is augmented by an additional variable INTERCEPT by using the AUGMENT option. The PROC CALIS statement contains the options UCOV and AUG to compute and analyze an augmented UCOV matrix from the input data set FOOD.

   data food;
   title 'Food example of KMENTA(1971, p.565 & 582)';
     input Q P D F Y;
     label  Q='Food Consumption per Head'
            P='Ratio of Food Prices to General Price'
            D='Disposable Income in Constant Prices'
            F='Ratio of Preceding Years Prices'
            Y='Time in Years 1922-1941';
   datalines;
     98.485  100.323   87.4   98.0   1
     99.187  104.264   97.6   99.1   2
    102.163  103.435   96.7   99.1   3
    101.504  104.506   98.2   98.1   4
    104.240   98.001   99.8  110.8   5
    103.243   99.456  100.5  108.2   6
    103.993  101.066  103.2  105.6   7
     99.900  104.763  107.8  109.8   8
    100.350   96.446   96.6  108.7   9
    102.820   91.228   88.9  100.6  10
     95.435   93.085   75.1   81.0  11
     92.424   98.801   76.9   68.6  12
     94.535  102.908   84.6   70.9  13
     98.757   98.756   90.6   81.4  14
    105.797   95.119  103.1  102.3  15
    100.225   98.451  105.1  105.0  16
    103.522   86.498   96.4  110.5  17
     99.929  104.016  104.4   92.5  18
    105.223  105.769  110.7   89.3  19
    106.232  113.490  127.1   93.0  20
   ;
   proc calis ucov aug data=food pshort;                      
      lineqs                                                    
         Q = alf1 Intercept + alf2 P + alf3 D + E1,           
         P = gam1 Intercept + gam2 Q + gam3 F + gam4 Y + E2;  
      std                                                       
         E1-E2 = eps1-eps2;                                   
      cov                                                       
         E1-E2 = eps3;                                        
      bounds                                                    
         eps1-eps2 >= 0. ;                                    
   run;

The following statements, an essentially equivalent model specification, use program code to reparameterize the model in terms of the original equations; the output is displayed in Output 25.2.1.

   proc calis data=food ucov aug pshort; 
      lineqs 
         Q = alphal Intercept + beta1 P + gamma1 D + E1,
         P = alpha2_b Intercept + gamma2_b F + gamma3_b Y + _b Q + E2;
      std
         E1-E2 = eps1-eps2;
      cov
         E1-E2 = eps3;
      parameters alpha2 (50.) beta2 gamma2 gamma3 (3*.25);
         alpha2_b = -alpha2 / beta2;
         gamma2_b = -gamma2 / beta2;
         gamma3_b = -gamma3 / beta2;
         _b       = 1 / beta2;
      bounds
         eps1-eps2 >= 0. ;
   run;

Output 25.2.1 Food Example of Kmenta (1971)
LINEQS Model Statement
  Matrix Rows Columns Matrix Type
Term 1 1 _SEL_ 6 8 SELECTION  
  2 _BETA_ 8 8 EQSBETA IMINUSINV
  3 _GAMMA_ 8 6 EQSGAMMA  
  4 _PHI_ 6 6 SYMMETRIC  

The 2 Endogenous Variables
Manifest Q P
Latent  

The 6 Exogenous Variables
Manifest D F Y Intercept
Latent  
Error E1 E2


Levenberg-Marquardt Optimization


Scaling Update of More (1978)

Parameter Estimates 10
Functions (Observations) 21
Lower Bounds 2
Upper Bounds 0

Optimization Start
Active Constraints 0 Objective Function 2.3500065042
Max Abs Gradient Element 203.9741437 Radius 62167.829174

Iteration   Restarts Function
Calls
Active
Constraints
  Objective
Function
Objective
Function
Change
Max Abs
Gradient
Element
Lambda Ratio
Between
Actual
and
Predicted
Change
1   0 2 0   1.19094 1.1591 3.9410 0 0.688
2   0 5 0   0.32678 0.8642 9.9864 0.00127 2.356
3   0 7 0   0.19108 0.1357 5.5100 0.00006 0.685
4   0 10 0   0.16682 0.0243 2.0513 0.00005 0.867
5   0 12 0   0.16288 0.00393 1.0570 0.00014 0.828
6   0 13 0   0.16132 0.00156 0.3643 0.00004 0.864
7   0 15 0   0.16077 0.000557 0.2176 0.00006 0.984
8   0 16 0   0.16052 0.000250 0.1819 0.00001 0.618
9   0 17 0   0.16032 0.000201 0.0662 0 0.971
10   0 18 0   0.16030 0.000011 0.0195 0 1.108
11   0 19 0   0.16030 6.116E-7 0.00763 0 1.389
12   0 20 0   0.16030 9.454E-8 0.00301 0 1.389
13   0 21 0   0.16030 1.461E-8 0.00118 0 1.388
14   0 22 0   0.16030 2.269E-9 0.000465 0 1.395
15   0 23 0   0.16030 3.59E-10 0.000182 0 1.427

Optimization Results
Iterations 15 Function Calls 24
Jacobian Calls 16 Active Constraints 0
Objective Function 0.1603035477 Max Abs Gradient Element 0.0001820805
Lambda 0 Actual Over Pred Change 1.4266532872
Radius 0.0010322573    

GCONV convergence criterion satisfied.

Fit Function 0.1603
Goodness of Fit Index (GFI) 0.9530
GFI Adjusted for Degrees of Freedom (AGFI) 0.0120
Root Mean Square Residual (RMR) 2.0653
Standardized Root Mean Square Residual (SRMR) 0.0009
Parsimonious GFI (Mulaik, 1989) 0.0635
Chi-Square 3.0458
Chi-Square DF 1
Pr > Chi-Square 0.0809
Independence Model Chi-Square 534.27
Independence Model Chi-Square DF 15
RMSEA Estimate 0.3281
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.7777
ECVI Estimate 1.8270
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 3.3493
Probability of Close Fit 0.0882
Bentler's Comparative Fit Index 0.9961
Normal Theory Reweighted LS Chi-Square 2.8142
Akaike's Information Criterion 1.0458
Bozdogan's (1987) CAIC -0.9500
Schwarz's Bayesian Criterion 0.0500
McDonald's (1989) Centrality 0.9501
Bentler & Bonett's (1980) Non-normed Index 0.9409
Bentler & Bonett's (1980) NFI 0.9943
James, Mulaik, & Brett (1982) Parsimonious NFI 0.0663
Z-Test of Wilson & Hilferty (1931) 1.4250
Bollen (1986) Normed Index Rho1 0.9145
Bollen (1988) Non-normed Index Delta2 0.9962
Hoelter's (1983) Critical N 25


Manifest Variable Equations with Estimates

Q = -0.2295 * P + 0.3100 * D + 93.6193 * Intercept + 1.0000   E1        
        beta1       gamma1       alphal                
P = 4.2140 * Q + -0.9305 * F + -1.5579 * Y + -218.9 * Intercept + 1.0000   E2
        _b       gamma2_b       gamma3_b       alpha2_b        

Variances of Exogenous Variables
Variable Parameter Estimate
D   10154
F   9989
Y   151.05263
Intercept   1.05263
E1 eps1 3.51274
E2 eps2 105.06746

Covariances Among Exogenous Variables
Var1 Var2 Parameter Estimate
D F   9994
D Y   1101
F Y   1046
D Intercept   102.66842
F Intercept   101.71053
Y Intercept   11.05263
E1 E2 eps3 -18.87270


Manifest Variable Equations with Standardized Estimates

Q = -0.2278 * P + 0.3016 * D + 0.9272 * Intercept + 0.0181   E1        
        beta1       gamma1       alphal                
P = 4.2467 * Q + -0.9048 * F + -0.1863 * Y + -2.1849 * Intercept + 0.0997   E2
        _b       gamma2_b       gamma3_b       alpha2_b        

Squared Multiple Correlations
  Variable Error Variance Total Variance R-Square
1 Q 3.51274 10730 0.9997
2 P 105.06746 10565 0.9901

Correlations Among Exogenous Variables
Var1 Var2 Parameter Estimate
D F   0.99237
D Y   0.88903
F Y   0.85184
D Intercept   0.99308
F Intercept   0.99188
Y Intercept   0.87652
E1 E2 eps3 -0.98237

Additional PARMS and Dependent Parameters
The Number of Dependent Parameters is 4
Parameter Estimate Standard
Error
t Value
alpha2 51.94453 . .
beta2 0.23731 . .
gamma2 0.22082 . .
gamma3 0.36971 . .
_b 4.21397 . .
gamma2_b -0.93053 . .
gamma3_b -1.55794 . .
alpha2_b -218.89288 . .

You can obtain almost equivalent results by applying the SAS/ETS procedure SYSLIN to this problem.

Previous Page | Next Page | Top of Page