The NLP Procedure |
The following table outlines the options in PROC NLP classified by function. An alphabetical list of options is provided in the Dictionary of Options.
Table 4.1: Functional Summary
Description | Statement | Option |
Input Data Set Options: | ||
input data set | PROC NLP | DATA= |
initial values and constraints | PROC NLP | INEST= |
quadratic objective function | PROC NLP | INQUAD= |
program statements | PROC NLP | MODEL= |
skip missing value observations | PROC NLP | NOMISS |
Output Data Set Options: | ||
variables and derivatives | PROC NLP | OUT= |
result parameter values | PROC NLP | OUTEST= |
program statements | PROC NLP | OUTMODEL= |
combine various OUT... statements | PROC NLP | OUTALL |
CRP Jacobian in the OUTEST= data set | PROC NLP | OUTCRPJAC |
derivatives in the OUT= data set | PROC NLP | OUTDER= |
grid in the OUTEST= data set | PROC NLP | OUTGRID |
Hessian in the OUTEST= data set | PROC NLP | OUTHESSIAN |
iterative output in the OUTEST= data set | PROC NLP | OUTITER |
Jacobian in the OUTEST= data set | PROC NLP | OUTJAC |
NLC Jacobian in the OUTEST= data set | PROC NLP | OUTNLCJAC |
time in the OUTEST= data set | PROC NLP | OUTTIME |
Optimization Options: | ||
minimization method | PROC NLP | TECH= |
update technique | PROC NLP | UPDATE= |
version of optimization technique | PROC NLP | VERSION= |
line-search method | PROC NLP | LINESEARCH= |
line-search precision | PROC NLP | LSPRECISION= |
type of Hessian scaling | PROC NLP | HESCAL= |
start for approximated Hessian | PROC NLP | INHESSIAN= |
iteration number for update restart | PROC NLP | RESTART= |
Initial Value Options: | ||
produce best grid points | PROC NLP | BEST= |
infeasible points in grid search | PROC NLP | INFEASIBLE |
pseudorandom initial values | PROC NLP | RANDOM= |
constant initial values | PROC NLP | INITIAL= |
Derivative Options: | ||
finite-difference derivatives | PROC NLP | FD= |
finite-difference derivatives | PROC NLP | FDHESSIAN= |
compute finite-difference interval | PROC NLP | FDINT= |
use only diagonal of Hessian | PROC NLP | DIAHES |
test gradient specification | PROC NLP | GRADCHECK= |
Constraint Options: | ||
range for active constraints | PROC NLP | LCEPSILON= |
LM tolerance for deactivating | PROC NLP | LCDEACT= |
tolerance for dependent constraints | PROC NLP | LCSINGULAR= |
sum all observations for continuous functions | NLINCON | / SUMOBS |
evaluate each observation for continuous functions | NLINCON | / EVERYOBS |
Termination Criteria Options: | ||
maximum number of function calls | PROC NLP | MAXFUNC= |
maximum number of iterations | PROC NLP | MAXITER= |
minimum number of iterations | PROC NLP | MINITER= |
upper limit on real time | PROC NLP | MAXTIME= |
absolute function convergence criterion | PROC NLP | ABSCONV= |
absolute function convergence criterion | PROC NLP | ABSFCONV= |
absolute gradient convergence criterion | PROC NLP | ABSGCONV= |
absolute parameter convergence criterion | PROC NLP | ABSXCONV= |
relative function convergence criterion | PROC NLP | FCONV= |
relative function convergence criterion | PROC NLP | FCONV2= |
relative gradient convergence criterion | PROC NLP | GCONV= |
relative gradient convergence criterion | PROC NLP | GCONV2= |
relative parameter convergence criterion | PROC NLP | XCONV= |
used in FCONV, GCONV criterion | PROC NLP | FSIZE= |
used in XCONV criterion | PROC NLP | XSIZE= |
Covariance Matrix Options: | ||
type of covariance matrix | PROC NLP | COV= |
factor of COV matrix | PROC NLP | SIGSQ= |
determine factor of COV matrix | PROC NLP | VARDEF= |
absolute singularity for inertia | PROC NLP | ASINGULAR= |
relative M singularity for inertia | PROC NLP | MSINGULAR= |
relative V singularity for inertia | PROC NLP | VSINGULAR= |
threshold for Moore-Penrose inverse | PROC NLP | G4= |
tolerance for singular COV matrix | PROC NLP | COVSING= |
profile confidence limits | PROC NLP | CLPARM= |
Printed Output Options: | ||
display (almost) all printed output | PROC NLP | PALL |
suppress all printed output | PROC NLP | NOPRINT |
reduce some default output | PROC NLP | PSHORT |
reduce most default output | PROC NLP | PSUMMARY |
display initial values and gradients | PROC NLP | PINIT |
display optimization history | PROC NLP | PHISTORY |
display Jacobian matrix | PROC NLP | PJACOBI |
display crossproduct Jacobian matrix | PROC NLP | PCRPJAC |
display Hessian matrix | PROC NLP | PHESSIAN |
display Jacobian of nonlinear constraints | PROC NLP | PNLCJAC |
display values of grid points | PROC NLP | PGRID |
display values of functions in LSQ, MIN, MAX | PROC NLP | PFUNCTION |
display approximate standard errors | PROC NLP | PSTDERR |
display covariance matrix | PROC NLP | PCOV |
display eigenvalues for covariance matrix | PROC NLP | PEIGVAL |
print code evaluation problems | PROC NLP | PERROR |
print measures of real time | PROC NLP | PTIME |
display model program, variables | PROC NLP | LIST |
display compiled model program | PROC NLP | LISTCODE |
Step Length Options: | ||
damped steps in line search | PROC NLP | DAMPSTEP= |
maximum trust region radius | PROC NLP | MAXSTEP= |
initial trust region radius | PROC NLP | INSTEP= |
Profile Point and Confidence Interval Options: | ||
factor relating discrepancy function to quantile | PROFILE | FFACTOR= |
scale for values written to OUTEST= data set | PROFILE | FORCHI= |
upper bound for confidence limit search | PROFILE | FEASRATIO= |
write all confidence limit parameter estimates to OUTEST= data set | PROFILE | OUTTABLE |
Miscellaneous Options: | ||
number of accurate digits in objective function | PROC NLP | FDIGITS= |
number of accurate digits in nonlinear constraints | PROC NLP | CDIGITS= |
general singularity criterion | PROC NLP | SINGULAR= |
do not compute inertia of matrices | PROC NLP | NOEIGNUM |
check optimality in neighborhood | PROC NLP | OPTCHECK= |
Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.