

The count regression model for panel data can be derived from the Poisson regression model. Consider the multiplicative one-way panel data model,
![\[ y_{it} \sim \mbox{Poisson}(\mu _{it}) \]](images/etsug_countreg0292.png)
where
![\[ \mu _{it} = \alpha _{i} \lambda _{it} = \alpha _{i} \exp (\mathbf{x}_{it}’\bbeta ),\; \; i=1,\ldots ,N, \; \; t=1,\ldots ,T \]](images/etsug_countreg0293.png)
Here,
are the individual effects.
In the fixed-effects model, the
are unknown parameters. The fixed-effects model can be estimated by eliminating
by conditioning on
.
In the random-effects model, the
are independent and identically distributed (iid) random variables, in contrast to the fixed effects model. The random-effects
model can then be estimated by assuming a distribution for
.
In the Poisson fixed-effects model, conditional on
and parameter
,
is iid Poisson-distributed with parameter
, and
does not include an intercept. Then, the conditional joint density for the outcomes within the ith panel is
![\begin{eqnarray*} P[y_{i1},\ldots ,y_{iT_{i}}|\sum _{t=1}^{T_{i}}y_{it}] & = & P[y_{i1},\ldots ,y_{iT_{i}},\sum _{t=1}^{T_{i}}y_{it}] / P[\sum _{t=1}^{T_{i}}y_{it}] \\ & = & P[y_{i1},\ldots ,y_{iT_{i}}]/P[\sum _{t=1}^{T_{i}}y_{it}] \end{eqnarray*}](images/etsug_countreg0300.png)
Because
is iid Poisson(
),
is the product of
Poisson densities. Also,
is Poisson(
). Then,
![\begin{eqnarray*} P[y_{i1},\ldots ,y_{iT_{i}}|\sum _{t=1}^{T_{i}}y_{it}] & = & \frac{\sum _{t=1}^{T_{i}} (\exp (-\mu _{it}) \mu _{it}^{y_{it}} / y_{it}! )}{\exp (-\sum _{t=1}^{T_{i}} \mu _{it}) \left( \sum _{t=1}^{T_{i}} \mu _{it} \right)^{\sum _{t=1}^{T_{i}} y_{it} } / \left( \sum _{t=1}^{T_{i}} y_{it} \right)!} \\ & = & \frac{\exp (-\sum _{t=1}^{T_{i}} \mu _{it}) \left( \prod _{t=1}^{T_{i}} \mu _{it}^{y_{it}} \right) \left( \prod _{t=1}^{T_{i}} y_{it}! \right) }{\exp ( -\sum _{t=1}^{T_{i}} \mu _{it}) \prod _{t=1}^{T_{i}} \left( \sum _{s=1}^{T_{i}} \mu _{is} \right)^{y_{it}} / \left( \sum _{t=1}^{T_{i}} y_{it} \right)!} \\ & = & \frac{(\sum _{t=1}^{T_{i}} y_{it})!}{(\prod _{t=1}^{T_{i}} y_{it}!)} \prod _{t=1}^{T_{i}} \left(\frac{\mu _{it}}{\sum _{s=1}^{T_{i}} \mu _{is}}\right)^{y_{it}} \\ & = & \frac{(\sum _{t=1}^{T_{i}} y_{it})!}{(\prod _{t=1}^{T_{i}} y_{it}!)} \prod _{t=1}^{T_{i}} \left(\frac{\lambda _{it}}{\sum _{s=1}^{T_{i}} \lambda _{is}}\right)^{y_{it}} \\ \end{eqnarray*}](images/etsug_countreg0306.png)
Thus, the conditional log-likelihood function of the fixed-effects Poisson model is given by
![\[ \mathcal{L} = \sum _{i=1}^{N} \left[ \ln \left( (\sum _{t=1}^{T_{i}}y_{it})! \right) - \sum _{t=1}^{T_{i}}\ln (y_{it}!) + \sum _{t=1}^{T_{i}}y_{it}\ln \left(\frac{\lambda _{it}}{\sum _{s=1}^{T_{i}}\lambda _{is}}\right) \right] \]](images/etsug_countreg0307.png)
The gradient is
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial \bbeta } & = & \sum _{i=1}^{N} \sum _{t=1}^{T_{i}} y_{it}x_{it} - \sum _{i=1}^{N} \sum _{t=1}^{T_{i}} \left[ \frac{y_{it} \sum _{s=1}^{T_{i}} \left( \exp (\mathbf{x}_{is}'\bbeta ) \mathbf{x}_{is} \right)}{\sum _{s=1}^{T_{i}} \exp (\mathbf{x}_{is}'\bbeta )} \right] \\ & = & \sum _{i=1}^{N} \sum _{t=1}^{T_{i}} y_{it} (\mathbf{x}_{it}-\mathbf{\bar{x}}_{i}) \end{eqnarray*}](images/etsug_countreg0308.png)
where
![\[ \mathbf{\bar{x}}_{i} = \sum _{s=1}^{T_{i}} \left( \frac{\exp (\mathbf{x}_{is}'\bbeta )}{\sum _{k=1}^{T_{i}} \exp (\mathbf{x}_{ik}'\bbeta )} \right) \mathbf{x}_{is} \]](images/etsug_countreg0309.png)
In the Poisson random-effects model, conditional on
and parameter
,
is iid Poisson-distributed with parameter
, and the individual effects,
, are assumed to be iid random variables. The joint density for observations in all time periods for the ith individual,
, can be obtained after the density
of
is specified.
Let
![\[ \alpha _{i} \sim \mbox{iid}\; \mathrm{gamma}(\theta ,\theta ) \]](images/etsug_countreg0313.png)
so that
and
:
![\[ g(\alpha _{i}) = \frac{\theta ^{\theta }}{\Gamma (\theta )} \alpha _{i}^{\theta -1}\exp (-\theta \alpha _{i}) \]](images/etsug_countreg0316.png)
Let
. Because
is conditional on
and parameter
is iid Poisson(
), the conditional joint probability for observations in all time periods for the ith individual,
, is the product of
Poisson densities:
![\begin{eqnarray*} P[y_{i1},\ldots ,y_{iT_{i}}|\lambda _{i},\alpha _{i}] & = & \prod _{t=1}^{T_{i}} P[y_{it}| \lambda _{i}, \alpha _{i}]\\ & = & \prod _{t=1}^{T_{i}}\left[ \frac{\exp (-\mu _{it}) \mu _{it}^{y_{it}}}{y_{it}!} \right] \\ & = & \left[ \prod _{t=1}^{T_{i}} \frac{e^{-\alpha _{i}\lambda _{it}}(\alpha _{i}\lambda _{it})^{y_{it}}}{y_{it}!} \right] \\ & = & \left[ \prod _{t=1}^{T_{i}} \lambda _{it}^{y_{it}}/y_{it}! \right] \left( e^{-\alpha _{i} \sum _{t} \lambda _{it}} \alpha _{i}^{\sum _{t} y_{it}} \right) \end{eqnarray*}](images/etsug_countreg0320.png)
Then, the joint density for the ith panel conditional on just the
can be obtained by integrating out
:
![\begin{eqnarray*} P[y_{i1},\ldots ,y_{iT_{i}}|\lambda _{i}] & = & \int _{0}^{\infty } P[y_{i1},\ldots ,y_{iT}|\lambda _{i},\alpha _{i}] g(\alpha _{i}) d\alpha _{i} \\ & = & \frac{\theta ^{\theta }}{\Gamma (\theta )} \left[ \prod _{t=1}^{T_{i}} \frac{\lambda _{it}^{y_{it}}}{y_{it}!} \right] \int _{0}^{\infty } \exp (-\alpha _{i} \sum _{t} \lambda _{it}) \alpha _{i}^{\sum _{t} y_{it}} \alpha _{i}^{\theta -1} \exp (-\theta \alpha _{i}) d\alpha _{i} \\ & = & \frac{\theta ^{\theta }}{\Gamma (\theta )} \left[ \prod _{t=1}^{T_{i}} \frac{\lambda _{it}^{y_{it}}}{y_{it}!} \right] \int _{0}^{\infty } \exp \left[ -\alpha _{i} \left( \theta + \sum _{t} \lambda _{it} \right) \right] \alpha _{i}^{\theta + \sum _{t} y_{it}-1} d\alpha _{i} \\ & = & \left[ \prod _{t=1}^{T_{i}} \frac{\lambda _{it}^{y_{it}}}{y_{it}!} \right] \frac{\Gamma (\theta + \sum _{t} y_{it})}{\Gamma (\theta )} \\ & & \times \left(\frac{\theta }{\theta +\sum _{t} \lambda _{it}} \right)^{\theta } \left(\theta + \sum _{t} \lambda _{it} \right)^{-\sum _{t} y_{it}} \\ & = & \left[ \prod _{t=1}^{T_{i}} \frac{\lambda _{it}^{y_{it}}}{y_{it}!} \right] \frac{\Gamma (\alpha ^{-1}+ \sum _{t} y_{it})}{\Gamma (\alpha ^{-1})} \\ & & \times \left(\frac{\alpha ^{-1}}{\alpha ^{-1}+\sum _{t} \lambda _{it}} \right)^{\alpha ^{-1}} \left(\alpha ^{-1} + \sum _{t} \lambda _{it} \right)^{-\sum _{t} y_{it}} \end{eqnarray*}](images/etsug_countreg0321.png)
where
is the overdispersion parameter. This is the density of the Poisson random-effects model with gamma-distributed random effects.
For this distribution,
and
; that is, there is overdispersion.
Then the log-likelihood function is written as
![\begin{eqnarray*} \mathcal{L} & = & \sum _{i=1}^{N} \left\{ \sum _{t=1}^{T_{i}} \ln (\frac{\lambda _{it}^{y_{it}}}{y_{it}!}) + \alpha ^{-1} \ln (\alpha ^{-1}) -\alpha ^{-1} \ln (\alpha ^{-1}+\sum _{t=1}^{T_{i}}\lambda _{it}) \right\} \\ & & + \sum _{i=1}^{N} \left\{ - \left( \sum _{t=1}^{T_{i}}y_{it} \right) \ln \left(\alpha ^{-1}+\sum _{t=1}^{T_{i}}\lambda _{it}\right) \right. \\ & & \left. \; \; \; \; \; \; \; + \ln \left[\Gamma \left(\alpha ^{-1}+ \sum _{t=1}^{T_{i}}y_{it} \right)\right] -\ln (\Gamma (\alpha ^{-1})) \right\} \end{eqnarray*}](images/etsug_countreg0325.png)
The gradient is

and
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial \alpha } & = & \sum _{i=1}^{N} \left\{ -\alpha ^{-2} \left[ [1+ \ln (\alpha ^{-1})] - \frac{(\alpha ^{-1}+\sum _{t=1}^{T_{i}} y_{it})}{(\alpha ^{-1})+ \sum _{t=1}^{T_{i}}\lambda _{it}} - \ln \left(\alpha ^{-1} + \sum _{t=1}^{T_{i}} \lambda _{it} \right) \right] \right\} \\ & + & \sum _{i=1}^{N} \left\{ -\alpha ^{-2} \left[ \frac{\Gamma '(\alpha ^{-1}+ \sum _{t=1}^{T_{i}} y_{it})}{\Gamma (\alpha ^{-1} +\sum _{t=1}^{T_{i}} y_{it})} -\frac{\Gamma '(\alpha ^{-1})}{\Gamma (\alpha ^{-1})} \right] \right\} \end{eqnarray*}](images/etsug_countreg0327.png)
where
,
and
is the digamma function.
This section shows the derivation of a negative binomial model with fixed effects. Keep the assumptions of the Poisson-distributed dependent variable
![\[ y_{it}\sim Poisson\left(\mu _{it}\right) \]](images/etsug_countreg0331.png)
But now let the Poisson parameter be random with gamma distribution and parameters
,
![\[ \mu _{it}\sim \Gamma \left(\lambda _{it},\delta \right) \]](images/etsug_countreg0333.png)
where one of the parameters is the exponentially affine function of independent variables
. Use integration by parts to obtain the distribution of
,
![\begin{eqnarray*} P\left[y_{it}\right]& = & \int _{0}^{\infty }\frac{e^{-\mu _{it}}\mu _{it}^{y_{it}}}{y_{it}!}f\left(\mu _{it}\right)d\mu _{it}\\ & = & \frac{\Gamma \left(\lambda _{it}+y_{it}\right)}{\Gamma \left(\lambda _{it}\right)\Gamma \left(y_{it}+1\right)}\left(\frac{\delta }{1+\delta }\right)^{\lambda _{it}}\left(\frac{1}{1+\delta }\right)^{y_{it}} \end{eqnarray*}](images/etsug_countreg0335.png)
which is a negative binomial distribution with parameters
. Conditional joint distribution is given as
![\begin{eqnarray*} P[y_{i1},\ldots ,y_{iT_{i}}|\sum _{t=1}^{T_{i}}y_{it}]& =& \left(\prod _{t=1}^{T_{i}}\frac{\Gamma \left(\lambda _{it}+y_{it}\right)}{\Gamma \left(\lambda _{it}\right)\Gamma \left(y_{it}+1\right)}\right)\\ & & \times \left(\frac{\Gamma \left(\sum _{t=1}^{T_{i}}\lambda _{it}\right)\Gamma \left(\sum _{t=1}^{T_{i}}y_{it}+1\right)}{\Gamma \left(\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}\right) \end{eqnarray*}](images/etsug_countreg0336.png)
Hence, the conditional fixed-effects negative binomial log-likelihood is
![\begin{eqnarray*} \mathcal{L}& = & \sum _{i=1}^{N}\left[\log \Gamma \left(\sum _{t=1}^{T_{i}}\lambda _{it}\right)+\log \Gamma \left(\sum _{t=1}^{T_{i}}y_{it}+1\right)-\log \Gamma \left(\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)\right]\\ & & +\sum _{i=1}^{N}\sum _{t=1}^{T_{i}}\left[\log \Gamma \left(\lambda _{it}+y_{it}\right)-\log \Gamma \left(\lambda _{it}\right)-\log \Gamma \left(y_{it}+1\right)\right] \end{eqnarray*}](images/etsug_countreg0337.png)
The gradient is
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial \beta }& = & \sum _{i=1}^{N}\left[\left(\frac{\Gamma '\left(\sum _{t=1}^{T_{i}}\lambda _{it}\right)}{\Gamma \left(\sum _{t=1}^{T_{i}}\lambda _{it}\right)}-\frac{\Gamma '\left(\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}{\Gamma \left(\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}\right)\sum _{t=1}^{T_{i}}\lambda _{it}\mathbf{x}_{it}\right]\\ & & +\sum _{i=1}^{N}\sum _{t=1}^{T_{i}}\left[\left(\frac{\Gamma '\left(\lambda _{it}+y_{it}\right)}{\Gamma \left(\lambda _{it}+y_{it}\right)}-\frac{\Gamma '\left(\lambda _{it}\right)}{\Gamma \left(\lambda _{it}\right)}\right)\lambda _{it}\mathbf{x}_{it}\right] \end{eqnarray*}](images/etsug_countreg0338.png)
This section describes the derivation of negative binomial model with random effects. Suppose
![\[ y_{it}\sim Poisson\left(\mu _{it}\right) \]](images/etsug_countreg0331.png)
with the Poisson parameter distributed as gamma,
![\[ \mu _{it}\sim \Gamma \left(\nu _{i}\lambda _{it},\delta \right) \]](images/etsug_countreg0339.png)
where its parameters are also random:
![\[ \nu _{i}\lambda _{it}=\exp \left(\mathbf{x}_{it}’\beta +\eta _{it}\right) \]](images/etsug_countreg0340.png)
Assume that the distribution of a function of
is beta with parameters
:
![\[ \frac{\nu _{i}}{1+\nu _{i}}\sim Beta\left(a,b\right) \]](images/etsug_countreg0343.png)
Explicitly, the beta density with
domain is
![\[ f\left(z\right)=\left[B\left(a,b\right)\right]^{-1}z^{a-1}\left(1-z\right)^{b-1} \]](images/etsug_countreg0345.png)
where
is the beta function. Then, conditional joint distribution of dependent variables is
![\[ P[y_{i1},\ldots ,y_{iT_{i}}|\mathbf{x}_{i1},\ldots ,\mathbf{x}_{iT_{i}},\nu _{i}]=\prod _{t=1}^{T_{i}}\frac{\Gamma \left(\lambda _{it}+y_{it}\right)}{\Gamma \left(\lambda _{it}\right)\Gamma \left(y_{it}+1\right)}\left(\frac{1}{1+\nu _{i}}\right)^{\lambda _{it}}\left(\frac{\nu _{i}}{1+\nu _{i}}\right)^{y_{it}} \]](images/etsug_countreg0347.png)
Integrating out the variable
yields the following conditional distribution function:
![\begin{eqnarray*} P[y_{i1},\ldots ,y_{iT_{i}}|\mathbf{x}_{i1},\ldots ,\mathbf{x}_{iT_{i}}]& = & \int _{0}^{1}\left[\prod _{t=1}^{T_{i}}\frac{\Gamma \left(\lambda _{it}+y_{it}\right)}{\Gamma \left(\lambda _{it}\right)\Gamma \left(y_{it}+1\right)}z_{i}^{\lambda _{it}}\left(1-z_{i}\right)^{y_{it}}\right]f\left(z_{i}\right)dz_{i}\\ & = & \frac{\Gamma \left(a+b\right)\Gamma \left(a+\sum _{t=1}^{T_{i}}\lambda _{it}\right)\Gamma \left(b+\sum _{t=1}^{T_{i}}y_{it}\right)}{\Gamma \left(a\right)\Gamma \left(b\right)\Gamma \left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}\\ & & \times \prod _{t=1}^{T_{i}}\frac{\Gamma \left(\lambda _{it}+y_{it}\right)}{\Gamma \left(\lambda _{it}\right)\Gamma \left(y_{it}+1\right)} \end{eqnarray*}](images/etsug_countreg0348.png)
Consequently, the conditional log-likelihood function for a negative binomial model with random effects is
![\begin{eqnarray*} \mathcal{L}& = & \sum _{i=1}^{N}\left[\log \Gamma \left(a+b\right)+\log \Gamma \left(a+\sum _{t=1}^{T_{i}}\lambda _{it}\right)+\log \Gamma \left(b+\sum _{t=1}^{T_{i}}y_{it}\right)\right]\\ & & -\sum _{i=1}^{N}\left[\log \Gamma \left(a\right)+\log \Gamma \left(b\right)+\log \Gamma \left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)\right]\\ & & +\sum _{i=1}^{N}\sum _{t=1}^{T_{i}}\left[\log \Gamma \left(\lambda _{it}+y_{it}\right)-\log \Gamma \left(\lambda _{it}\right)-\log \Gamma \left(y_{it}+1\right)\right] \end{eqnarray*}](images/etsug_countreg0349.png)
The gradient is
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial \beta }& = & \sum _{i=1}^{N}\left[\frac{\Gamma '\left(a+\sum _{t=1}^{T_{i}}\lambda _{it}\right)}{\Gamma \left(a+\sum _{t=1}^{T_{i}}\lambda _{it}\right)}\sum _{t=1}^{T_{i}}\lambda _{it}\mathbf{x}_{it}\right]\\ & & -\sum _{i=1}^{N}\left[\frac{\Gamma '\left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}{\Gamma \left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}\sum _{t=1}^{T_{i}}\lambda _{it}\mathbf{x}_{it}\right]\\ & & +\sum _{i=1}^{N}\sum _{t=1}^{T_{i}}\left[\left(\frac{\Gamma '\left(\lambda _{it}+y_{it}\right)}{\Gamma \left(\lambda _{it}+y_{it}\right)}-\frac{\Gamma '\left(\lambda _{it}\right)}{\Gamma \left(\lambda _{it}\right)}\right)\lambda _{it}\mathbf{x}_{it}\right] \end{eqnarray*}](images/etsug_countreg0350.png)
and
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial a}& = & \sum _{i=1}^{N}\left[\frac{\Gamma '\left(a+b\right)}{\Gamma \left(a+b\right)}+\frac{\Gamma '\left(a+\sum _{t=1}^{T_{i}}\lambda _{it}\right)}{\Gamma \left(a+\sum _{t=1}^{T_{i}}\lambda _{it}\right)}\right]\\ & & -\sum _{i=1}^{N}\left[\frac{\Gamma '\left(a\right)}{\Gamma \left(a\right)}+\frac{\Gamma '\left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}{\Gamma \left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}\right] \end{eqnarray*}](images/etsug_countreg0351.png)
and
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial b}& = & \sum _{i=1}^{N}\left[\frac{\Gamma '\left(a+b\right)}{\Gamma \left(a+b\right)}+\frac{\Gamma '\left(b+\sum _{t=1}^{T_{i}}y_{it}\right)}{\Gamma \left(b+\sum _{t=1}^{T_{i}}y_{it}\right)}\right]\\ & & -\sum _{i=1}^{N}\left[\frac{\Gamma '\left(b\right)}{\Gamma \left(b\right)}+\frac{\Gamma '\left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}{\Gamma \left(a+b+\sum _{t=1}^{T_{i}}\lambda _{it}+\sum _{t=1}^{T_{i}}y_{it}\right)}\right] \end{eqnarray*}](images/etsug_countreg0352.png)