

In the zero-inflated Poisson (ZIP) regression model, the data generation process that is referred to earlier as Process 2 is
![\[ g(y_{i}) = \frac{\exp (-\mu _{i})\mu _{i}^{y_{i}}}{y_{i}!} \]](images/etsug_countreg0199.png)
where
. Thus the ZIP model is defined as

The conditional expectation and conditional variance of
are given by
![\[ E(y_{i}|\mathbf{x}_{i},\mathbf{z}_{i}) = \mu _{i}(1 -F_{i}) \]](images/etsug_countreg0202.png)
![\[ V(y_{i}|\mathbf{x}_{i},\mathbf{z}_{i}) = E(y_{i}|\mathbf{x}_{i},\mathbf{z}_{i})(1+\mu _{i}F_{i}) \]](images/etsug_countreg0203.png)
Note that the ZIP model (as well as the ZINB model) exhibits overdispersion because
.
In general, the log-likelihood function of the ZIP model is
![\[ \mathcal{L} = \sum _{i=1}^{N}w_ i\ln \left[ P(y_{i}|\mathbf{x}_{i},\mathbf{z}_{i}) \right] \]](images/etsug_countreg0205.png)
After a specific link function (either logistic or standard normal) for the probability
is chosen, it is possible to write the exact expressions for the log-likelihood function and the gradient.
First, consider the ZIP model in which the probability
is expressed using a logistic link function—namely,
![\[ \varphi _{i}=\frac{\exp (\mathbf{z}_{i}'\bgamma )}{1+\exp (\mathbf{z}_{i}'\bgamma )} \]](images/etsug_countreg0206.png)
The log-likelihood function is
![\begin{eqnarray*} \mathcal{L} & = & \sum _{\{ i: y_{i}=0\} } w_ i\ln \left[\exp (\mathbf{z}_{i}’\bgamma )+\exp (-\exp (\mathbf{x}_{i}’\bbeta )) \right] \\ & & + \sum _{\{ i: y_{i}>0\} }w_ i\left[y_{i} \mathbf{x}_{i}’\bbeta -\exp (\mathbf{x}_{i}’\bbeta ) - \sum _{k=2}^{y_{i}}\ln (k) \right] \\ & & - \sum _{i=1}^{N}w_ i\ln \left[ 1 + \exp (\mathbf{z}_{i}’\bgamma ) \right] \end{eqnarray*}](images/etsug_countreg0207.png)
See the section Poisson Regression for the definition of
.
The gradient for this model is given by
![\[ \frac{\partial \mathcal{L}}{\partial \bgamma } = \sum _{\{ i: y_{i}=0\} } w_ i\left[\frac{\exp (\mathbf{z}_{i}'\bgamma )}{\exp (\mathbf{z}_{i}'\bgamma ) + \exp (-\exp (\mathbf{x}_{i}'\bbeta ))}\right] \mathbf{z}_{i} - \sum _{i=1}^{N}w_ i\left[\frac{\exp (\mathbf{z}_{i}'\bgamma )}{1 + \exp (\mathbf{z}_{i}'\bgamma )} \right] \mathbf{z}_{i} \]](images/etsug_countreg0208.png)
![\[ \frac{\partial \mathcal{L}}{\partial \bbeta } = \sum _{\{ i: y_{i}=0\} } w_ i\left[\frac{-\exp (\mathbf{x}_{i}'\bbeta ) \exp (-\exp (\mathbf{x}_{i}'\bbeta ))}{\exp (\mathbf{z}_{i}'\bgamma ) + \exp (-\exp (\mathbf{x}_{i}'\bbeta ))}\right] \mathbf{x}_{i} + \sum _{\{ i: y_{i}>0\} }w_ i\left[y_{i} - \exp (\mathbf{x}_{i}’\bbeta ) \right] \mathbf{x}_{i} \]](images/etsug_countreg0209.png)
Next, consider the ZIP model in which the probability
is expressed using a standard normal link function:
. The log-likelihood function is
![\begin{eqnarray*} \mathcal{L} & = & \sum _{\{ i: y_{i}=0\} }w_ i\ln \left\{ \Phi (\mathbf{z}_{i}’\bgamma ) + \left[ 1- \Phi (\mathbf{z}_{i}’\bgamma )\right] \exp (-\exp (\mathbf{x}_{i}’\bbeta )) \right\} \\ & + & \sum _{\{ i: y_{i}>0\} }w_ i\left\{ \ln \left[ \left( 1-\Phi (\mathbf{z}_{i}’\bgamma )\right) \right] - \exp (\mathbf{x}_{i}’\bbeta ) + y_{i} \mathbf{x}_{i}’\bbeta - \sum _{k=2}^{y_{i}} \ln (k) \right\} \end{eqnarray*}](images/etsug_countreg0211.png)
See the section Poisson Regression for the definition of
.
The gradient for this model is given by
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial \bgamma } & = & \sum _{\{ i: y_{i}=0\} } w_ i\frac{\varphi (\mathbf{z}_{i}'\bgamma )\left[ 1-\exp (-\exp (\mathbf{x}_{i}'\bbeta )) \right]}{\Phi (\mathbf{z}_{i}'\bgamma ) + \left[ 1 - \Phi (\mathbf{z}_{i}'\bgamma ) \right] \exp (-\exp (\mathbf{x}_{i}'\bbeta ))} \mathbf{z}_{i} \\ & - & \sum _{\{ i: y_{i}>0\} } w_ i\frac{\varphi (\mathbf{z}_{i}'\bgamma )}{\left[ 1 - \Phi (\mathbf{z}_{i}'\bgamma ) \right]} \mathbf{z}_{i} \end{eqnarray*}](images/etsug_countreg0212.png)
![\begin{eqnarray*} \frac{\partial \mathcal{L}}{\partial \bbeta } & = & \sum _{\{ i: y_{i}=0\} } w_ i\frac{-\left[1-\Phi (\mathbf{z}_{i}'\bgamma )\right] \exp (\mathbf{x}_{i}'\bbeta ) \exp (-\exp (\mathbf{x}_{i}'\bbeta ))}{\Phi (\mathbf{z}_{i}'\bgamma ) + \left[ 1 - \Phi (\mathbf{z}_{i}'\bgamma ) \right] \exp (-\exp (\mathbf{x}_{i}'\bbeta ))} \mathbf{x}_{i} \\ & + & \sum _{\{ i: y_{i}>0\} } w_ i\left[y_{i}-\exp (\mathbf{x}_{i}’\bbeta ) \right] \mathbf{x}_{i} \end{eqnarray*}](images/etsug_countreg0213.png)