A zero-mean VARMA() process is written as
or
where and .
For stationarity and invertibility of the VARMA process, the roots of and are outside the unit circle.
Under the assumption of normality of the with zero mean vector and nonsingular covariance matrix , the conditional (approximate) log-likelihood function of a zero-mean VARMA(,) model is considered.
Define and with and ; define and . Then
where and .
Then, the conditional (approximate) log-likelihood function can be written as follows (Reinsel, 1997):
where , and is such that .
For the exact log-likelihood function of a VARMA(,) model, the Kalman filtering method is used for transforming the VARMA process into the state-space form (Reinsel, 1997).
The state-space form of the zero-mean VARMA(,) model consists of a state equation
and an observation equation
where for
and
The Kalman filtering approach is used for evaluation of the likelihood function. The updating equation is
where
The prediction equation is
where for .
The log-likelihood function can be expressed as
where and are determined recursively from the Kalman filter procedure. To construct the likelihood function from Kalman filtering, you obtain , , and .
Define the vector as
where and . All elements of are estimated through the preceding maximum likelihood method. The estimates of and are output in the ParameterEstimates ODS table. The estimates of the covariance matrix () are output in the CovarianceParameterEstimates ODS table. If you specify the OUTEST=, OUTCOV, PRINT=(COVB), or PRINT=(CORRB) option, you can see all elements of , including the covariance matrix , in the parameter estimates, covariance of parameter estimates, or correlation of parameter estimates. You can also apply the BOUND, INITIAL, RESTRICT, and TEST statements to any elements of , including the covariance matrix . For more information, see the syntax of the corresponding statement.
The log-likelihood equations are solved by iterative numerical procedures such as quasi-Newton optimization. The starting values for the AR and MA parameters are obtained from the least squares estimates.
Under the assumptions of stationarity and invertibility for the VARMA model and the assumption that is a white noise process, is a consistent estimator for and converges in distribution to the multivariate normal as , where is the asymptotic information matrix of .
Defining the vector
the asymptotic distribution of the impulse response function for a VARMA() model is
where is the covariance matrix of the parameter estimates and
where is a matrix with the second following after block matrices; is a matrix; is a matrix,
where
is a zero matrix, and
Consider a VARMA(1,1) model with mean zero,
where is the white noise process with a mean zero vector and the positive-definite covariance matrix .
The following IML procedure statements simulate a bivariate vector time series from this model to provide test data for the VARMAX procedure:
proc iml; sig = {1.0 0.5, 0.5 1.25}; phi = {1.2 -0.5, 0.6 0.3}; theta = {0.5 -0.2, 0.1 0.3}; /* to simulate the vector time series */ call varmasim(y,phi,theta) sigma=sig n=100 seed=34657; cn = {'y1' 'y2'}; create simul3 from y[colname=cn]; append from y; run;
The following statements fit a VARMA(1,1) model to the simulated data. You specify the order of the autoregressive model by using the P= option and specify the order of moving-average model by using the Q= option. You specify the quasi-Newton optimization in the NLOPTIONS statement as an optimization method.
proc varmax data=simul3; nloptions tech=qn; model y1 y2 / p=1 q=1 noint print=(estimates); run;
Figure 35.46 shows the initial values of parameters. The initial values were estimated by using the least squares method.
Figure 35.46: Start Parameter Estimates for the VARMA(1, 1) Model
Optimization Start | |||
---|---|---|---|
Parameter Estimates | |||
N | Parameter | Estimate | Gradient Objective Function |
1 | AR1_1_1 | 1.013118 | -0.897170 |
2 | AR1_2_1 | 0.510233 | 0.262244 |
3 | AR1_1_2 | -0.399051 | 0.640577 |
4 | AR1_2_2 | 0.441344 | -8.443760 |
5 | MA1_1_1 | 0.295872 | -1.805699 |
6 | MA1_2_1 | -0.002809 | 2.098520 |
7 | MA1_1_2 | -0.044216 | -0.575174 |
8 | MA1_2_2 | 0.425334 | 0.791139 |
9 | COV1_1 | 1.330160 | 2.522806 |
10 | COV1_2 | 0.407148 | -2.343560 |
11 | COV2_2 | 1.491404 | 3.948366 |
Figure 35.47 shows the default option settings for the quasi-Newton optimization technique.
Figure 35.47: Default Criteria for the quasi-Newton Optimization
Minimum Iterations | 0 |
---|---|
Maximum Iterations | 200 |
Maximum Function Calls | 2000 |
ABSGCONV Gradient Criterion | 0.00001 |
GCONV Gradient Criterion | 1E-8 |
ABSFCONV Function Criterion | 0 |
FCONV Function Criterion | 2.220446E-16 |
FCONV2 Function Criterion | 0 |
FSIZE Parameter | 0 |
ABSXCONV Parameter Change Criterion | 0 |
XCONV Parameter Change Criterion | 0 |
XSIZE Parameter | 0 |
ABSCONV Function Criterion | -1.34078E154 |
Line Search Method | 2 |
Starting Alpha for Line Search | 1 |
Line Search Precision LSPRECISION | 0.4 |
DAMPSTEP Parameter for Line Search | . |
Singularity Tolerance (SINGULAR) | 1E-8 |
Figure 35.48 shows the iteration history of parameter estimates.
Figure 35.48: Iteration History of Parameter Estimates
Iteration | Restarts | Function Calls |
Active Constraints |
Objective Function |
Objective Function Change |
Max Abs Gradient Element |
Step Size |
Slope of Search Direction |
||
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 5 | 0 | 122.10816 | 0.1580 | 7.2509 | 0.00486 | -64.337 | ||
2 | 0 | 7 | 0 | 121.88166 | 0.2265 | 4.9540 | 1.000 | -0.340 | ||
3 | 0 | 9 | 0 | 121.62016 | 0.2615 | 4.5335 | 1.000 | -0.383 | ||
4 | 0 | 11 | 0 | 121.44241 | 0.1777 | 3.7692 | 1.000 | -0.260 | ||
5 | 0 | 15 | 0 | 121.27005 | 0.1724 | 4.7159 | 2.000 | -0.189 | ||
6 | 0 | 17 | 0 | 121.12987 | 0.1402 | 5.3950 | 2.668 | -0.162 | ||
7 | 0 | 20 | 0 | 121.07909 | 0.0508 | 1.9377 | 1.045 | -0.0872 | ||
8 | 0 | 23 | 0 | 121.06293 | 0.0162 | 1.1396 | 1.347 | -0.0235 | ||
9 | 0 | 26 | 0 | 121.05350 | 0.00943 | 0.7476 | 1.739 | -0.0109 | ||
10 | 0 | 28 | 0 | 121.04733 | 0.00617 | 1.3794 | 5.300 | -0.0044 | ||
11 | 0 | 30 | 0 | 121.03785 | 0.00948 | 0.3432 | 1.248 | -0.0124 | ||
12 | 0 | 33 | 0 | 121.03607 | 0.00178 | 0.2326 | 1.260 | -0.0028 | ||
13 | 0 | 36 | 0 | 121.03566 | 0.000417 | 0.1110 | 2.521 | -0.0003 | ||
14 | 0 | 39 | 0 | 121.03540 | 0.000258 | 0.0747 | 2.677 | -0.0002 | ||
15 | 0 | 42 | 0 | 121.03525 | 0.000144 | 0.0815 | 3.525 | -0.0001 | ||
16 | 0 | 45 | 0 | 121.03521 | 0.000041 | 0.0703 | 2.322 | -35E-6 | ||
17 | 0 | 47 | 0 | 121.03519 | 0.000026 | 0.0445 | 3.340 | -304E-7 | ||
18 | 0 | 50 | 0 | 121.03518 | 8.928E-6 | 0.00645 | 1.008 | -177E-7 | ||
19 | 0 | 52 | 0 | 121.03518 | 5.534E-7 | 0.0129 | 10.000 | -165E-9 |
Figure 35.49 shows the final parameter estimates.
Figure 35.49: Results of Parameter Estimates for the VARMA(1, 1) Model
Optimization Results | |||
---|---|---|---|
Parameter Estimates | |||
N | Parameter | Estimate | Gradient Objective Function |
1 | AR1_1_1 | 1.018458 | -0.010483 |
2 | AR1_2_1 | 0.391825 | 0.012937 |
3 | AR1_1_2 | -0.386819 | -0.009399 |
4 | AR1_2_2 | 0.552806 | 0.011177 |
5 | MA1_1_1 | 0.322920 | 0.003909 |
6 | MA1_2_1 | -0.165007 | -0.004186 |
7 | MA1_1_2 | -0.021595 | 0.002849 |
8 | MA1_2_2 | 0.585758 | -0.003038 |
9 | COV1_1 | 1.252015 | 0.000974 |
10 | COV1_2 | 0.379502 | -0.002960 |
11 | COV2_2 | 1.313151 | 0.001441 |
Figure 35.50 shows the AR coefficient matrix in terms of lag 1, the MA coefficient matrix in terms of lag 1, the parameter estimates, and their significance, which is one indication of how well the model fits the data.
Figure 35.50: Parameter Estimates for the VARMA(1, 1) Model
Type of Model | VARMA(1,1) |
---|---|
Estimation Method | Maximum Likelihood Estimation |
AR | |||
---|---|---|---|
Lag | Variable | y1 | y2 |
1 | y1 | 1.01846 | -0.38682 |
y2 | 0.39182 | 0.55281 |
MA | |||
---|---|---|---|
Lag | Variable | e1 | e2 |
1 | y1 | 0.32292 | -0.02160 |
y2 | -0.16501 | 0.58576 |
Schematic Representation | ||
---|---|---|
Variable/Lag | AR1 | MA1 |
y1 | +- | +. |
y2 | ++ | .+ |
+ is > 2*std error, - is < -2*std error, . is between, * is N/A |
Model Parameter Estimates | ||||||
---|---|---|---|---|---|---|
Equation | Parameter | Estimate | Standard Error |
t Value | Pr > |t| | Variable |
y1 | AR1_1_1 | 1.01846 | 0.10256 | 9.93 | 0.0001 | y1(t-1) |
AR1_1_2 | -0.38682 | 0.09644 | -4.01 | 0.0001 | y2(t-1) | |
MA1_1_1 | 0.32292 | 0.14524 | 2.22 | 0.0285 | e1(t-1) | |
MA1_1_2 | -0.02160 | 0.14203 | -0.15 | 0.8795 | e2(t-1) | |
y2 | AR1_2_1 | 0.39182 | 0.10062 | 3.89 | 0.0002 | y1(t-1) |
AR1_2_2 | 0.55281 | 0.08422 | 6.56 | 0.0001 | y2(t-1) | |
MA1_2_1 | -0.16501 | 0.15704 | -1.05 | 0.2960 | e1(t-1) | |
MA1_2_2 | 0.58576 | 0.14115 | 4.15 | 0.0001 | e2(t-1) |
Covariance Parameter Estimates | ||||
---|---|---|---|---|
Parameter | Estimate | Standard Error |
t Value | Pr > |t| |
COV1_1 | 1.25202 | 0.17697 | 7.07 | 0.0001 |
COV1_2 | 0.37950 | 0.13401 | 2.83 | 0.0056 |
COV2_2 | 1.31315 | 0.18610 | 7.06 | 0.0001 |
The fitted VARMA(1,1) model with estimated standard errors in parentheses is given as
and
A general VARMAX() process is written as
or
where , . The consists of all possible deterministic terms, namely constant, seasonal dummies, linear trend, quadratic trend, and exogenous variables; , where ; ; , are seasonal dummies and is based on NSEASON= option; ; is the parameter matrix corresponding to and for .
The state-space form of the VARMAX(,,) model consists of a state equation
and an observation equation
where for
and
The Kalman filtering approach is used to evaluate the likelihood function. The updating equation is
where
The prediction equation is
where for .
The log-likelihood function can be expressed as
where and are determined recursively from the Kalman filter procedure. To construct the likelihood function from Kalman filtering, you obtain , , and . Note that the dimension of the state-space vector of the Kalman filtering method for the VARMAX(,,) model is large, so it takes a lot of time and memory for computing.
Two examples of VARMAX modeling follow:
model y1 y2 = x1 / q=1; nloptions tech=qn;
model y1 y2 = x1 / p=1 q=1 xlag=1 nocurrentx; nloptions tech=qn;