The ARIMA Procedure

References

  • Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Transaction on Automatic Control, AC–19, 716–723.

  • Anderson, T. W. (1971), The Statistical Analysis of Time Series, New York: John Wiley & Sons.

  • Andrews and Herzberg (1985), A Collection of Problems from Many Fields for the Student and Research Worker, New York: Springer–Verlag.

  • Ansley, C. (1979), An Algorithm for the Exact Likelihood of a Mixed Autoregressive Moving-Average Process, Biometrika, 66, 59.

  • Ansley, C. and Newbold, P. (1980), Finite Sample Properties of Estimators for Autoregressive Moving-Average Models, Journal of Econometrics, 13, 159.

  • Bhansali, R. J. (1980), Autoregressive and Window Estimates of the Inverse Correlation Function, Biometrika, 67, 551–566.

  • Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, San Francisco: Holden-Day.

  • Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis: Forecasting and Control, Third Edition, Englewood Cliffs, NJ: Prentice Hall, 197–199.

  • Box, G. E. P. and Tiao, G. C. (1975), Intervention Analysis with Applications to Economic and Environmental Problems, JASA, 70, 70–79.

  • Brocklebank, J. C. and Dickey, D. A. (2003), SAS System for Forecasting Time Series, Second Edition, Cary, North Carolina: SAS Institute Inc.

  • Brockwell, P. J. and Davis, R. A. (1991), Time Series: Theory and Methods, Second Edition, New York: Springer-Verlag.

  • Chatfield, C. (1980), Inverse Autocorrelations, Journal of the Royal Statistical Society, A142, 363–377.

  • Choi, ByoungSeon (1992), ARMA Model Identification, New York: Springer-Verlag, 129–132.

  • Cleveland, W. S. (1972), The Inverse Autocorrelations of a Time Series and Their Applications, Technometrics, 14, 277.

  • Cobb, G. W. (1978), The Problem of the Nile: Conditional Solution to a Change Point Problem, Biometrika, 65, 243–251.

  • Davidson, J. (1981), Problems with the Estimation of Moving-Average Models, Journal of Econometrics, 16, 295.

  • Davies, N., Triggs, C. M., and Newbold, P. (1977), Significance Levels of the Box-Pierce Portmanteau Statistic in Finite Samples, Biometrika, 64, 517–522.

  • de Jong, P. and Penzer, J. (1998), Diagnosing Shocks in Time Series, Journal of the American Statistical Association, Vol. 93, No. 442.

  • Dickey, D. A. (1976), Estimation and Testing of Nonstationary Time Series, unpublished Ph.D. thesis, Iowa State University, Ames.

  • Dickey, D. A., and Fuller, W. A. (1979), Distribution of the Estimators for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, 74 (366), 427–431.

  • Dickey, D. A., Hasza, D. P., and Fuller, W. A. (1984), Testing for Unit Roots in Seasonal Time Series, Journal of the American Statistical Association, 79 (386), 355–367.

  • Dunsmuir, William (1984), Large Sample Properties of Estimation in Time Series Observed at Unequally Spaced Times, in Time Series Analysis of Irregularly Observed Data, Emanuel Parzen, ed., New York: Springer-Verlag.

  • Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., and Chen, B. C. (1998), New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program, Journal of Business and Economic Statistics, 16, 127–177.

  • Fuller, W. A. (1976), Introduction to Statistical Time Series, New York: John Wiley & Sons.

  • Hamilton, J. D. (1994), Time Series Analysis, Princeton: Princeton University Press.

  • Hannan, E. J. and Rissanen, J. (1982), Recursive Estimation of Mixed Autoregressive Moving-Average Order, Biometrika, 69 (1), 81–94.

  • Harvey, A. C. (1981), Time Series Models, New York: John Wiley & Sons.

  • Jones, Richard H. (1980), Maximum Likelihood Fitting of ARMA Models to Time Series with Missing Observations, Technometrics, 22, 389–396.

  • Kohn, R. and Ansley, C. (1985), Efficient Estimation and Prediction in Time Series Regression Models, Biometrika, 72, 3, 694–697.

  • Ljung, G. M. and Box, G. E. P. (1978), On a Measure of Lack of Fit in Time Series Models, Biometrika, 65, 297–303.

  • Montgomery, D. C. and Johnson, L. A. (1976), Forecasting and Time Series Analysis, New York: McGraw-Hill.

  • Morf, M., Sidhu, G. S., and Kailath, T. (1974), Some New Algorithms for Recursive Estimation on Constant Linear Discrete Time Systems, IEEE Transactions on Automatic Control, AC–19, 315–323.

  • Nelson, C. R. (1973), Applied Time Series for Managerial Forecasting, San Francisco: Holden-Day.

  • Newbold, P. (1981), Some Recent Developments in Time Series Analysis, International Statistical Review, 49, 53–66.

  • Newton, H. Joseph and Pagano, Marcello (1983), The Finite Memory Prediction of Covariance Stationary Time Series, SIAM Journal of Scientific and Statistical Computing, 4, 330–339.

  • Pankratz, Alan (1983), Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, New York: John Wiley & Sons.

  • Pankratz, Alan (1991), Forecasting with Dynamic Regression Models, New York: John Wiley & Sons.

  • Pearlman, J. G. (1980), An Algorithm for the Exact Likelihood of a High-Order Autoregressive Moving-Average Process, Biometrika, 67, 232–233.

  • Priestly, M. B. (1981), Spectra Analysis and Time Series, Volume 1: Univariate Series, New York: Academic Press

  • Schwarz, G. (1978), Estimating the Dimension of a Model, Annals of Statistics, 6, 461–464.

  • Stoffer, D. and Toloi, C. (1992), A Note on the Ljung-Box-Pierce Portmanteau Statistic with Missing Data, Statistics & Probability Letters 13, 391–396.

  • Tsay, R. S. and Tiao, G. C. (1984), Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models, JASA, 79 (385), 84–96.

  • Tsay, R. S. and Tiao, G. C. (1985), Use of Canonical Analysis in Time Series Model Identification, Biometrika, 72 (2), 299–315.

  • Woodfield, T. J. (1987), Time Series Intervention Analysis Using SAS Software, Proceedings of the Twelfth Annual SAS Users Group International Conference, 331–339. Cary, NC: SAS Institute Inc.