### Prior Daily Weights and Trading-Day Regression

Suppose that a detailed examination of retail sales at ZXY Company indicates that certain days of the week have higher amounts of sales. In particular, Thursday, Friday, and Saturday have approximately twice the amount of sales as Monday, Tuesday, and Wednesday, and no sales occur on Sunday. This means that months with five Saturdays would have higher amounts of sales than months with only four Saturdays.

This phenomenon is called a calendar effect; it can be handled in PROC X11 by using the PDWEIGHTS (prior daily weights) statement or the TDREGR=option (trading-day regression). The PDWEIGHTS statement and the TDREGR=option can be used separately or together.

If the relative weights are known (as in the preceding) it is appropriate to use the PDWEIGHTS statement. If further residual calendar variation is present, TDREGR=ADJUST should also be used. If you know that a calendar effect is present, but know nothing about the relative weights, use TDREGR=ADJUST without a PDWEIGHTS statement.

In this example, it is assumed that the calendar variation is due to both prior daily weights and residual variation. Thus both a PDWEIGHTS statement and TDREGR=ADJUST are specified.

Note that only the relative weights are needed; in the actual computations, PROC X11 normalizes the weights to sum to 7.0. If a day of the week is not present in the PDWEIGHTS statement, it is given a value of zero. Thus sun=0 is not needed.

```proc x11 data=sales;