| The ENTROPY Procedure |
It is sometimes useful to specify priors and supports by using the PDATA= option. This example illustrates how to create a PDATA= data set which contains the priors and support points for use in a subsequent PROC ENTROPY step. In order to have a model to estimate in PROC ENTROPY, you must first have data to analyze. The following DATA step generates the data used in this analysis:
title "Using a PDATA= data set";
data a;
retain seed1 55371 seed2 97335;
array x[4];
do t = 1 to 100;
ys = -5;
do k = 1 to 4;
x[k] = rannor( seed1 + k ) ;
ys = ys + x[k] * k;
end;
ys = ys + rannor( seed2 );
output;
end;
run;
Next you fit this data with some arbitrary parameter support points and priors by using the following PROC ENTROPY statements:
proc entropy data = a gme primal;
priors x1 -10(2) 30(1)
x2 -20(3) 30(2)
x3 -15(4) 30(4)
x4 -25(3) 30(2)
intercept -13(4) 30(2) ;
model ys = x1 x2 x3 x4 / esupports=(-25 0 25);
run;
These statements produce the output shown in Output 12.4.1.
| GME Variable Estimates | ||||
|---|---|---|---|---|
| Variable | Estimate | Approx Std Err | t Value | Approx Pr > |t| |
| x1 | 1.195688 | 0.1078 | 11.09 | <.0001 |
| x2 | 1.844903 | 0.1018 | 18.12 | <.0001 |
| x3 | 3.268396 | 0.1136 | 28.77 | <.0001 |
| x4 | 3.908194 | 0.0934 | 41.83 | <.0001 |
| intercept | -4.94319 | 0.1005 | -49.21 | <.0001 |
You can estimate the same model by first creating a PDATA= data set, which includes the same information as the PRIORS statement in the preceding PROC ENTROPY step.
A data set that defines the supports and priors for the model parameters is shown in the following statements:
data test;
length Variable $ 12 Equation $ 12;
input Variable $ Equation $ Nsupport Support Prior ;
datalines;
Intercept . 2 -13 0.66667
Intercept . 2 30 0.33333
x1 . 2 -10 0.66667
x1 . 2 30 0.33333
x2 . 2 -20 0.60000
x2 . 2 30 0.40000
x3 . 2 -15 0.50000
x3 . 2 30 0.50000
x4 . 2 -25 0.60000
x4 . 2 30 0.40000
;
The following statements reestimate the model by using these support points.
proc entropy data=a gme primal pdata=test;
model ys = x1 x2 x3 x4 / esupports=(-25 0 25);
run;
These statements produce the output shown in Output 12.4.2.
| GME Variable Estimates | ||||
|---|---|---|---|---|
| Variable | Estimate | Approx Std Err | t Value | Approx Pr > |t| |
| x1 | 1.195686 | 0.1078 | 11.09 | <.0001 |
| x2 | 1.844902 | 0.1018 | 18.12 | <.0001 |
| x3 | 3.268395 | 0.1136 | 28.77 | <.0001 |
| x4 | 3.908194 | 0.0934 | 41.83 | <.0001 |
| Intercept | -4.94319 | 0.1005 | -49.21 | <.0001 |
These results are identical to the ones produced by the previous PROC ENTROPY step.
Note: This procedure is experimental.
Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.