/****************************************************************/ /* S A S S A M P L E L I B R A R Y */ /* */ /* NAME: hploge03 */ /* TITLE: Example 3 for PROC HPLOGISTIC */ /* PRODUCT: HPA */ /* SYSTEM: ALL */ /* KEYS: logistic regression analysis, */ /* polytomous response data */ /* PROCS: HPLOGISTIC */ /* DATA: */ /* */ /* SUPPORT: Bob Derr */ /* REF: SAS/HPA User's Guide, PROC HPLOGISTIC chapter */ /* MISC: */ /* */ /****************************************************************/ /***************************************************************** Example 3: Ordinal Logistic Regression *****************************************************************/ /* The data, taken from McCullagh and Nelder (1989, p.175), were derived from an experiment concerned with the effect of four cheese additives on taste. The nine response categories range from strong dislike (1) to excellent taste (9). Let y be the response variable. The variable Additive specifies the cheese additive (1, 2, 3, or 4). The data after the DATALINES statement are arranged like a 2-way table of additive by rating; i.e., the rows are the four additives and the columns are the nine levels of the rating scale. */ title 'Example 3: Ordinal Logistic Regression'; data Cheese; do Additive = 1 to 4; do y = 1 to 9; input freq @@; output; end; end; label y='Taste Rating'; datalines; 0 0 1 7 8 8 19 8 1 6 9 12 11 7 6 1 0 0 1 1 6 8 23 7 5 1 0 0 0 0 1 3 7 14 16 11 ; proc hplogistic data=Cheese; freq freq; class Additive(ref='4') / param=ref ; model y=Additive; title 'Multiple Response Cheese Tasting Experiment'; run;