Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function on the nonnegative quadrant, subject to two constraints:
The linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are identified immediately as
Carefully construct the quadratic matrix . Observe that you can use symmetry to separate the main-diagonal and off-diagonal elements:
The first expression
sums the main-diagonal elements. Thus, in this case you have
Notice that the main-diagonal values are doubled in order to accommodate the 1/2 factor. Now the second term
sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal () term in the objective function is , so you have
Notice that you do not need to specify the upper triangular part of the quadratic matrix.
Finally, the matrix of constraints is as follows:
The SAS input data set with a quadratic programming system (QPS) format for the preceding problem can be expressed in the following manner:
data gsdata; input field1 $ field2 $ field3 $ field4 field5 $ field6 @; datalines; NAME . EXAMPLE . . . ROWS . . . . . N OBJ . . . . L R1 . . . . G R2 . . . . COLUMNS . . . . . . X1 R1 1.0 R2 1.0 . X1 OBJ 2.0 . . . X2 R1 -1.0 R2 2.0 . X2 OBJ 3.0 . . RHS . . . . . . RHS R1 1.0 . . . RHS R2 100 . . RANGES . . . . . BOUNDS . . . . . QUADOBJ . . . . . . X1 X1 2.0 . . . X1 X2 2.5 . . . X2 X2 20 . . ENDATA . . . . . ;
For more details about the QPS-format data set, see Chapter 17: The MPS-Format SAS Data Set.
Alternatively, if you have a QPS-format flat file named gs.qps, then the following call to the SAS macro %MPS2SASD translates
that file into a SAS data set, named gsdata
:
%mps2sasd(mpsfile =gs.qps, outdata = gsdata);
Note: The SAS macro %MPS2SASD is provided in SAS/OR software. See Converting an MPS/QPS-Format File: %MPS2SASD for details.
You can use the following call to PROC OPTQP:
proc optqp data=gsdata primalout = gspout dualout = gsdout; run;
The procedure output is displayed in Figure 14.2.
Figure 14.2: Procedure Output
Problem Summary | |
---|---|
Problem Name | EXAMPLE |
Objective Sense | Minimization |
Objective Function | OBJ |
RHS | RHS |
Number of Variables | 2 |
Bounded Above | 0 |
Bounded Below | 2 |
Bounded Above and Below | 0 |
Free | 0 |
Fixed | 0 |
Number of Constraints | 2 |
LE (<=) | 1 |
EQ (=) | 0 |
GE (>=) | 1 |
Range | 0 |
Constraint Coefficients | 4 |
Hessian Diagonal Elements | 2 |
Hessian Elements Above the Diagonal | 1 |
The optimal primal solution is displayed in Figure 14.3.
Figure 14.3: Optimal Solution
The SAS log shown in Figure 14.4 provides information about the problem, convergence information after each iteration, and the optimal objective value.
Figure 14.4: Iteration Log
NOTE: The problem EXAMPLE has 2 variables (0 free, 0 fixed). |
NOTE: The problem has 2 constraints (1 LE, 0 EQ, 1 GE, 0 range). |
NOTE: The problem has 4 constraint coefficients. |
NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian |
elements above the diagonal. |
NOTE: The QP presolver value AUTOMATIC is applied. |
NOTE: The QP presolver removed 0 variables and 0 constraints. |
NOTE: The QP presolver removed 0 constraint coefficients. |
NOTE: The presolved problem has 2 variables, 2 constraints, and 4 constraint |
coefficients. |
NOTE: The QP solver is called. |
NOTE: The Interior Point algorithm is used. |
NOTE: The deterministic parallel mode is enabled. |
NOTE: The Interior Point algorithm is using up to 4 threads. |
Primal Bound Dual |
Iter Complement Duality Gap Infeas Infeas Infeas Time |
0 3.5863E+03 4.8823E+00 1.0251E+00 1.0354E+02 2.3142E-15 0 |
1 1.9345E+03 9.6222E-01 4.4158E-01 4.4602E+01 5.7855E-16 0 |
2 2.2140E+03 1.2297E-01 4.4158E-03 4.4602E-01 5.5926E-15 0 |
3 5.0020E+01 3.2272E-03 4.4158E-05 4.4602E-03 9.6502E-15 0 |
4 4.9973E-01 3.2332E-05 4.4158E-07 4.4602E-05 2.5148E-14 0 |
5 4.9972E-03 3.2332E-07 4.4158E-09 4.4602E-07 3.0701E-14 0 |
6 0.0000E+00 3.6334E-16 1.5730E-16 0.0000E+00 1.2342E-14 0 |
NOTE: Optimal. |
NOTE: Objective = 15018. |
NOTE: The Interior Point solve time is 0.00 seconds. |
NOTE: The data set WORK.GSPOUT has 2 observations and 9 variables. |
NOTE: The data set WORK.GSDOUT has 2 observations and 10 variables. |
See the section Interior Point Algorithm: Overview and the section Iteration Log for the OPTQP Procedure for more details about convergence information given by the iteration log.