Typically, mathematical programming models are very sparse. This means that only a small percentage of the coefficients are nonzero. The sparse problem input is ideal for these models. The oil blending problem in the section An Introductory Example has a sparse form. This example shows the same problem in a sparse form with the data given in a different order. In addition to representing the problem in a concise form, the sparse format
allows long column names
enables easy matrix generation (see Example 5.12, Example 5.13, and Example 5.14)
is compatible with MPS sparse format
The model in the sparse format is solved by invoking PROC LP with the SPARSEDATA option as follows.
data oil; format _type_ $8. _col_ $14. _row_ $16. ; input _type_ $ _col_ $ _row_ $ _coef_ ; datalines; max . profit . . arabian_light profit -175 . arabian_heavy profit -165 . brega profit -205 . jet_1 profit 300 . jet_2 profit 300 eq . napha_l_conv . . arabian_light napha_l_conv .035 . arabian_heavy napha_l_conv .030 . brega napha_l_conv .045 . naphtha_light napha_l_conv -1 eq . napha_i_conv . . arabian_light napha_i_conv .100 . arabian_heavy napha_i_conv .075 . brega napha_i_conv .135 . naphtha_inter napha_i_conv -1 eq . heating_oil_conv . . arabian_light heating_oil_conv .390 . arabian_heavy heating_oil_conv .300 . brega heating_oil_conv .430 . heating_oil heating_oil_conv -1 eq . recipe_1 . . naphtha_inter recipe_1 .3 . heating_oil recipe_1 .7 eq . recipe_2 . . jet_1 recipe_1 -1 . naphtha_light recipe_2 .2 . heating_oil recipe_2 .8 . jet_2 recipe_2 -1 . _rhs_ profit 0 upperbd . available . . arabian_light available 110 . arabian_heavy available 165 . brega available 80 ;
proc lp SPARSEDATA; run;
The output from PROC LP follows.
Output 5.2.1: Output for the Sparse Oil Blending Problem
Problem Summary | |
---|---|
Objective Function | Max profit |
Rhs Variable | _rhs_ |
Type Variable | _type_ |
Problem Density (%) | 45.00 |
Variables | Number |
Non-negative | 5 |
Upper Bounded | 3 |
Total | 8 |
Constraints | Number |
EQ | 5 |
Objective | 1 |
Total | 6 |
Solution Summary | |
---|---|
Terminated Successfully |
|
Objective Value | 1544 |
Phase 1 Iterations | 0 |
Phase 2 Iterations | 5 |
Phase 3 Iterations | 0 |
Integer Iterations | 0 |
Integer Solutions | 0 |
Initial Basic Feasible Variables | 5 |
Time Used (seconds) | 0 |
Number of Inversions | 3 |
Epsilon | 1E-8 |
Infinity | 1.797693E308 |
Maximum Phase 1 Iterations | 100 |
Maximum Phase 2 Iterations | 100 |
Maximum Phase 3 Iterations | 99999999 |
Maximum Integer Iterations | 100 |
Time Limit (seconds) | 120 |
Variable Summary | ||||||
---|---|---|---|---|---|---|
Col | Variable Name | Status | Type | Price | Activity | Reduced Cost |
1 | arabian_heavy | UPPERBD | -165 | 0 | -21.45 | |
2 | arabian_light | UPPBD | UPPERBD | -175 | 110 | 11.6 |
3 | brega | UPPBD | UPPERBD | -205 | 80 | 3.35 |
4 | heating_oil | BASIC | NON-NEG | 0 | 77.3 | 0 |
5 | jet_1 | BASIC | NON-NEG | 300 | 60.65 | 0 |
6 | jet_2 | BASIC | NON-NEG | 300 | 63.33 | 0 |
7 | naphtha_inter | BASIC | NON-NEG | 0 | 21.8 | 0 |
8 | naphtha_light | BASIC | NON-NEG | 0 | 7.45 | 0 |
Constraint Summary | ||||||
---|---|---|---|---|---|---|
Row | Constraint Name | Type | S/S Col | Rhs | Activity | Dual Activity |
1 | profit | OBJECTVE | . | 0 | 1544 | . |
2 | napha_l_conv | EQ | . | 0 | 0 | -60 |
3 | napha_i_conv | EQ | . | 0 | 0 | -90 |
4 | heating_oil_conv | EQ | . | 0 | 0 | -450 |
5 | recipe_1 | EQ | . | 0 | 0 | -300 |
6 | recipe_2 | EQ | . | 0 | 0 | -300 |