Executive Papers A-Z

A
Paper 3276-2015:
All In: Integrated Enterprise-Wide Analytics and Reporting with SAS® Visual Analytics and SAS® Business intelligence
In 2013, the University of North Carolina (UNC) at Chapel Hill initiated enterprise-wide use of SAS® solutions for reporting and data transformations. Just over one year later, the initial rollout was scheduled to go live to an audience of 5,500 users as part of an adoption of PeopleSoft ERP for Finance, Human Resources, Payroll, and Student systems. SAS® Visual Analytics was used for primary report delivery as an embedded resource within the UNC Infoporte, an existing portal. UNC made the date. With the SAS solutions, UNC delivered the data warehouse and initial reports on the same day that the ERP systems went live. After the success of the initial launch, UNC continues to develop and evolve the solution with additional technologies, data, and reports. This presentation touches on a few of the elements required for a medium to large size organization to integrate SAS solutions such as SAS Visual Analytics and SAS® Enterprise Business Intelligence within their infrastructure.
Read the paper (PDF).
Jonathan Pletzke, UNC Chapel Hill
B
Paper 3082-2015:
Big Data Meets Little Data: Hadoop and Arduino Integration Using SAS®
SAS® has been an early leader in big data technology architecture that more easily integrates unstructured files across multi-tier data system platforms. By using SAS® Data Integration Studio and SAS® Enterprise Business Intelligence software, you can easily automate big data using SAS® system accommodations for Hadoop open-source standards. At the same time, another seminal technology has emerged, which involves real-time multi-sensor data integration using Arduino microprocessors. This break-out session demonstrates the use of SAS® 9.4 coding to define Hadoop clusters and to automate Arduino data acquisition to convert custom unstructured log files into structured tables, which can be analyzed by SAS in near real time. Examples include the use of SAS Data Integration Studio to create and automate stored processes, as well as tips for C language object coding to integrate to SAS data management, with a simple temperature monitoring application for Hadoop to Arduino using SAS.
Keith Allan Jones PHD, QUALIMATIX.com
Paper 3410-2015:
Building Credit Modeling Dashboards
Dashboards are an effective tool for analyzing and summarizing the large volumes of data required to manage loan portfolios. Effective dashboards must highlight the most critical drivers of risk and performance within the portfolios and must be easy to use and implement. Developing dashboards often require integrating data, analysis, or tools from different software platforms into a single, easy-to-use environment. FI Consulting has developed a Credit Modeling Dashboard in Microsoft Access that integrates complex models based on SAS into an easy-to-use, point-and-click interface. The dashboard integrates, prepares, and executes back-end models based on SAS using command-line programming in Microsoft Access with Visual Basic for Applications (VBA). The Credit Modeling Dashboard developed by FI Consulting represents a simple and effective way to supply critical business intelligence in an integrated, easy-to-use platform without requiring investment in new software or to rebuild existing SAS tools already in use.
Read the paper (PDF).
Jeremy D'Antoni, FI Consulting
Paper 4240-2015:
Building the Right Team
What do going to the South Pole at the beginning of the 20th century, winning the 1980 gold medal in Olympic hockey, and delivering a successful project have in common? The answer: Good teams succeed when groups of highly talented individuals often do not. So, what is your Everest and how do you gather the right group to successfully scale it? Success often hinges on not just building a team, but on assembling the right team. Join Scott Sanders, a business and IT veteran who has effectively built, managed, and been part of successful teams throughout his 27-year career. Hear some of his best practices for how to put together a good team and keep them focused, engaged, and motivated to deliver a project.
Scott Sanders, Sears Holdings
D
Paper SAS4780-2015:
Deriving Insight Across the Enterprise from Digital Data
Learn how leading retailers are developing key findings in digital data to be leveraged across marketing, merchandising, and IT.
Rachel Thompson, SAS
E
Paper 3920-2015:
Entity Resolution and Master Data Life Cycle Management in the Era of Big Data
Proper management of master data is a critical component of any enterprise information system. However, effective master data management (MDM) requires that both IT and Business understand the life cycle of master data and the fundamental principles of entity resolution (ER). This presentation provides a high-level overview of current practices in data matching, record linking, and entity information life cycle management that are foundational to building an effective strategy to improve data integration and MDM. Particular areas of focus are: 1) The need for ongoing ER analytics--the systematic and quantitative measurement of ER performance; 2) Investing in clerical review and asserted resolution for continuous improvement; and 3) Addressing the large-scale ER challenge through distributed processing.
Read the paper (PDF). | Watch the recording.
John Talburt, Black Oak Analytics, Inc
G
Paper 1886-2015:
Getting Started with Data Governance
While there has been tremendous progress in technologies related to data storage, high-performance computing, and advanced analytic techniques, organizations have only recently begun to comprehend the importance of parallel strategies that help manage the cacophony of concerns around access, quality, provenance, data sharing, and use. While data governance is not new, the drumbeat around it, along with master data management and data quality, is approaching a crescendo. Intensified by the increase in consumption of information, expectations about ubiquitous access, and highly dynamic visualizations, these factors are also circumscribed by security and regulatory constraints. In this paper, we provide a summary of what data governance is and its importance. We go beyond the obvious and provide practical guidance on what it takes to build out a data governance capability appropriate to the scale, size, and purpose of the organization and its culture. Moreover, we discuss best practices in the form of requirements that highlight what we think is important to consider as you provide that tactical linkage between people, policies, and processes to the actual data lifecycle. To that end, our focus includes the organization and its culture, people, processes, policies, and technology. Further, we include discussions of organizational models as well as the role of the data steward, and provide guidance on how to formalize data governance into a sustainable set of practices within your organization.
Read the paper (PDF). | Watch the recording.
Greg Nelson, ThotWave
Lisa Dodson, SAS
H
Paper SAS1722-2015:
HTML5 and SAS® Mobile BI: Empowering Business Managers with Analytics and Business Intelligence
Business managers are seeing the value of incorporating business information and analytics in daily decision-making with real-time information, when and where it is needed during business meetings and customer engagements. Real-time access of customer and business information reduces the latency in decision-making with confidence and accuracy, increasing the overall efficiency of the company. SAS is introducing new product options with HTML5 and adding advanced features in SAS® Mobile BI in SAS® Visual Analytics 7.2 to enhance the reach and experience of business managers to SAS® analytics and dashboards from SAS Visual Analytics. With SAS Mobile BI 7.2, SAS will push the limits of a business user's ability to author and change the content of dashboards and reports on mobile devices. This presentation focuses on both the new HTML5-based product options and the new advancements made with SAS Mobile BI that empower business users. We present in detail the scope and new features that are offered with the HTML5-based viewer and with SAS Mobile BI from SAS Visual Analytics. Since the new HTML5-based viewer and SAS Mobile BI are the viewer options for business users to visualize and consume the content from SAS Visual Analytics, this presentation demonstrates the two products in detail. Key product capabilities are demoed.
Read the paper (PDF).
Murali Nori, SAS
Paper 3151-2015:
How to Use Internal and External Data to Realize the Potential for Changing the Game in Handset Campaigns
The telecommunications industry is the fastest changing business ecosystem in this century. Therefore, handset campaigning to increase loyalty is the top issue for telco companies. However, these handset campaigns have great fraud and payment risks if the companies do not have the ability to classify and assess customers properly according to their risk propensity. For many years, telco companies managed the risk with business rules such as customer tenure until the launch of analytics solutions into the market. But few business rules restrict telco companies in the sales of handsets to new customers. On the other hand, with increasing competition pressure in telco companies, it is necessary to use external credit data to sell handsets to new customers. Credit bureau data was a good opportunity to measure and understand the behaviors of the applicants. But using external data required system integration and real-time decision systems. For those reasons, we need a solution that enables us to predict risky customers and then integrate risk scores and all information into one real-time decision engine for optimized handset application vetting. After an assessment period, SAS® Analytics platform and RTDM were chosen as the most suitable solution because they provide a flexible user friendly interface, high integration, and fast deployment capability. In this project, we build a process that includes three main stages to transform the data into knowledge. These stages are data collection, predictive modelling, and deployment and decision optimization. a) Data Collection: We designed a specific daily updated data mart that connects internal payment behavior, demographics, and customer experience data with external credit bureau data. In this way, we can turn data into meaningful knowledge for better understanding of customer behavior. b) Predictive Modelling: For using the company potential, it is critically important to use an analytics approach that is based on state-of-the-art tec hnologies. We built nine models to predict customer propensity to pay. As a result of better classification of customers, we obtain satisfied results in designing collection scenarios and decision model in handset application vetting. c) Deployment and Decision Optimization: Knowledge is not enough to reach success in business. It should be turned into optimized decision and deployed real time. For this reason, we have been using SAS® Predictive Analytics Tools and SAS® Real-Time Decision Manager to primarily turn data into knowledge and turn knowledge into strategy and execution. With this system, we are now able to assess customers properly and to sell handset even to our brand-new customers as part of the application vetting process. As a result of this, while we are decreasing nonpayment risk, we generated extra revenue that is coming from brand-new contracted customers. In three months, 13% of all handset sales was concluded via RTDM. Another benefit of the RTDM is a 30% cost saving in external data inquiries. Thanks to the RTDM, Avea has become the first telecom operator that uses bureau data in Turkish Telco industry.
Read the paper (PDF).
Hurcan Coskun, Avea
L
Paper 3514-2015:
Learn How Slalom Consulting and Celebrity Cruises Bridge the Marketing Campaign Attribution Divide
Although today's marketing teams enjoy large-scale campaign relationship management systems, many are still left with the task of bridging the well-known gap between campaigns and customer purchasing decisions. During this session, we discuss how Slalom Consulting and Celebrity Cruises decided to take a bold step and bridge that gap. We show how marketing efforts are distorted when a team considers only the last campaign sent to a customer that later booked a cruise. Then we lay out a custom-built SAS 9.3 solution that scales to process thousands of campaigns per month using a stochastic attribution technique. This approach considers all of the campaigns that touch the customer, assigning a single campaign or a set of campaigns that contributed to their decision.
Christopher Byrd, Slalom Consulting
Paper SPON2000-2015:
Leveraging In-Database Technology to Enhance Data Governance and Improve Performance
In-database processing refers to the integration of advanced analytics into the data warehouse. With this capability, analytic processing is optimized to run where the data reside, in parallel, without having to copy or move the data for analysis. From a data governance perspective there are many good reasons to embrace in-database processing. Many analytical computing solutions and large databases use this technology because it provides significant performance improvements over more traditional methods. Come learn how Blue Cross Blue Shield of Tennessee (BCBST) uses in-database processing from SAS and Teradata.
Harold Klagstad, BlueCross BlueShield of TN
M
Paper 1381-2015:
Model Risk and Corporate Governance of Models with SAS®
Banks can create a competitive advantage in their business by using business intelligence (BI) and by building models. In the credit domain, the best practice is to build risk-sensitive models (Probability of Default, Exposure at Default, Loss-given Default, Unexpected Loss, Concentration Risk, and so on) and implement them in decision-making, credit granting, and credit risk management. There are models and tools on the next level built on these models and that are used to help in achieving business targets, risk-sensitive pricing, capital planning, optimizing of ROE/RAROC, managing the credit portfolio, setting the level of provisions, and so on. It works remarkably well as long as the models work. However, over time, models deteriorate and their predictive power can drop dramatically. Since the global financial crisis in 2008, we have faced a tsunami of regulation and accelerated frequency of changes in the business environment, which cause models to deteriorate faster than ever before. As a result, heavy reliance on models in decision-making (some decisions are automated following the model's results--without human intervention) might result in a huge error that can have dramatic consequences for the bank's performance. In my presentation, I share our experience in reducing model risk and establishing corporate governance of models with the following SAS® tools: model monitoring, SAS® Model Manager, dashboards, and SAS® Visual Analytics.
Read the paper (PDF).
Boaz Galinson, Bank Leumi
Paper 1344-2015:
Modernise Your SAS® Platform
Organisations find SAS® upgrades and migration projects come with risk, costs, and challenges to solve. The benefits are enticing new software capabilities such as SAS® Visual Analytics, which help maintain your competitive advantage. An interesting conundrum. This paper explores how to evaluate the benefits and plan the project, as well as how the cloud option impacts modernisation. The author presents with the experience of leading numerous migration and modernisation projects from the leading UK SAS Implementation Partner.
Read the paper (PDF).
David Shannon, Amadeus Software
O
Paper 3425-2015:
Obtaining a Unique View of a Company: Reports in SAS® Visual Analytics
SAS® Visual Analytics provides users with a unique view of their company by monitoring products, and identifying opportunities and threats, making it possible to hold recommendations, set a price strategy, and accelerate or brake product growth. In SAS Visual Analytics, you can see in one report the return required, a competitor analysis, and a comparison of realized results versus predicted results. Reports can be used to obtain a vision of the whole company and include several hierarchies (for example, by business unit, by segment, by product, by region, and so on). SAS Visual Analytics enables senior executives to easily and quickly view information. You can also use tracking indicators that are used by the insurance market.
Read the paper (PDF).
Jacqueline Fraga, SulAmerica Cia Nacional de Seguros
Paper 4300-2015:
"Out Here" Forecasting: A Retail Case Study
Faced with diminishing forecast returns from the forecast engine within the existing replenishment application, Tractor Supply Company (TSC) engaged SAS® Institute to deliver a fully integrated forecasting solution that promised a significant improvement of chain-wide forecast accuracy. The end-to-end forecast implementation including problems faced, solutions delivered, and results realized will be explored.
Read the paper (PDF).
Chris Houck, SAS
P
Paper 1884-2015:
Practical Implications of Sharing Data: A Primer on Data Privacy, Anonymization, and De-Identification
Researchers, patients, clinicians, and other health-care industry participants are forging new models for data-sharing in hopes that the quantity, diversity, and analytic potential of health-related data for research and practice will yield new opportunities for innovation in basic and translational science. Whether we are talking about medical records (for example, EHR, lab, notes), administrative data (claims and billing), social (on-line activity), behavioral (fitness trackers, purchasing patterns), contextual (geographic, environmental), or demographic data (genomics, proteomics), it is clear that as health-care data proliferates, threats to security grow. Beginning with a review of the major health-care data breeches in our recent history, we highlight some of the lessons that can be gleaned from these incidents. In this paper, we talk about the practical implications of data sharing and how to ensure that only the right people have the right access to the right level of data. To that end, we explore not only the definitions of concepts like data privacy, but we discuss, in detail, methods that can be used to protect data--whether inside our organization or beyond its walls. In this discussion, we cover the fundamental differences between encrypted data, 'de-identified', 'anonymous', and 'coded' data, and methods to implement each. We summarize the landscape of maturity models that can be used to benchmark your organization's data privacy and protection of sensitive data.
Read the paper (PDF). | Watch the recording.
Greg Nelson, ThotWave
R
Paper SAS1861-2015:
Regulatory Stress Testing--A Manageable Process with SAS®
As a consequence of the financial crisis, banks are required to stress test their balance sheet and earnings based on prescribed macroeconomic scenarios. In the US, this exercise is known as the Comprehensive Capital Analysis and Review (CCAR) or Dodd-Frank Act Stress Testing (DFAST). In order to assess capital adequacy under these stress scenarios, banks need a unified view of their projected balance sheet, incomes, and losses. In addition, the bar for these regulatory stress tests is very high regarding governance and overall infrastructure. Regulators and auditors want to ensure that the granularity and quality of data, model methodology, and assumptions reflect the complexity of the banks. This calls for close internal collaboration and information sharing across business lines, risk management, and finance. Currently, this process is managed in an ad hoc, manual fashion. Results are aggregated from various lines of business using spreadsheets and Microsoft SharePoint. Although the spreadsheet option provides flexibility, it brings ambiguity into the process and makes the process error prone and inefficient. This paper introduces a new SAS® stress testing solution that can help banks define, orchestrate and streamline the stress-testing process for easier traceability, auditability, and reproducibility. The integrated platform provides greater control, efficiency, and transparency to the CCAR process. This will enable banks to focus on more value-added analysis such as scenario exploration, sensitivity analysis, capital planning and management, and model dependencies. Lastly, the solution was designed to leverage existing in-house platforms that banks might already have in place.
Read the paper (PDF).
Wei Chen, SAS
Shannon Clark
Erik Leaver, SAS
John Pechacek
Paper SAS4284-2015:
Retail 2015 - the landscape, trends, and technology
Retailers, amongst nearly every other consumer business are under more pressure and competition than ever before. Today 's consumer is more connected, informed and empowered and the pace of innovation is rapidly changing the way consumers shop. Retailers are expected to sift through and implement digital technology, make sense of their Big Data with analytics, change processes and cut costs all at the same time. Today 's session, SRetail 2015 the landscape, trends, and technology will cover major issues retailers are facing today as well as both business and technology trends that will shape their future.
Lori Schafer
S
Paper SAS4800-2015:
SAS Certification Overview
Join us for lunch as we discuss the benefits of being part of the elite group that is SAS Certified Professionals. The SAS Global Certification program has awarded more than 79,000 credentials to SAS users across the globe. Come listen to Terry Barham, Global Certification Manager, give an overview of the SAS Certification program, explain the benefits of becoming SAS certified and discuss exam preparation tips. This session will also include a Q&A section where you can get answers to your SAS Certification questions.
Paper SAS4283-2015:
SAS Retail Roadmap
The goal of this presentation is to provide user group an update on retail solution releases in past one year and the roadmap moving forward.
Saurabh Gupta, SAS
Paper 4400-2015:
SAS® Analytics plus Warren Buffett's Wisdom Beats Berkshire Hathaway! Huh?
Individual investors face a daunting challenge. They must select a portfolio of securities comprised of a manageable number of individual stocks, bonds and/or mutual funds. An investor might initiate her portfolio selection process by choosing the number of unique securities to hold in her portfolio. This is both a practical matter and a matter of risk management. It is practical because there are tens of thousands of actively traded securities from which to choose and it is impractical for an individual investor to own every available security. It is also a risk management measure because investible securities bring with them the potential of financial loss -- to the point of becoming valueless in some cases. Increasing the number of securities in a portfolio decreases the probability that an investor will suffer drastically from corporate bankruptcy, for instance. However, holding too many securities in a portfolio can restrict performance. After deciding the number of securities to hold, the investor must determine which securities she will include in her portfolio and what proportion of available cash she will allocate to each security. Once her portfolio is constructed, the investor must manage the portfolio over time. This generally entails periodically reassessing the proportion of each security to maintain as time advances, but may also involve the elimination of some securities and the initiation of positions in new securities. This paper introduces an analytically driven method for portfolio security selection based on minimizing the mean correlation of returns across the portfolio. It also introduces a method for determining the proportion of each security that should be maintained within the portfolio. The methods for portfolio selection and security weighting described herein work in conjunction to maximize expected portfolio return, while minimizing the probability of loss over time. This involves a re-visioning of Harry Markowitz's Nobel Prize winning concept kno wn as Efficient Frontier . Resultant portfolios are assessed via Monte Carlo simulation and results are compared to the Standard & Poor's 500 Index and Warren Buffett's Berkshire Hathaway, which has a well-establish history of beating the Standard & Poor's 500 Index over a long period. To those familiar with Dr. Markowitz's Modern Portfolio Theory this paper may appear simply as a repackaging of old ideas. It is not.
Read the paper (PDF).
Bruce Bedford, Oberweis Dairy
Paper 3109-2015:
SAS® Enterprise Guide® for Managers and Executives
SAS® Enterprise Guide® is an extremely valuable tool for programmers. But it should also be leveraged by managers and executives to do data exploration, get information on the fly, and take advantage of the powerful analytics and reporting that SAS® has to offer. This can all be done without learning to program. This paper will overview how SAS Enterprise Guide can improve the process of turning real-time data into real-time business decisions by managers.
Jennifer First-Kluge, Systems Seminar Consultants
Paper 3479-2015:
SAS® Metadata Security 101: A Primer for SAS Administrators and Users Not Familiar with SAS
The purpose behind this paper is to provide a high-level overview of how SAS® security works in a way that can be communicated to both SAS administrators and users who are not familiar with SAS. It is not uncommon to hear SAS administrators complain that their IT department and users just don't 'get' it when it comes to metadata and security. For the administrator or user not familiar with SAS, understanding how SAS interacts with the operating system, the file system, external databases, and users can be confusing. Based on a SAS® Enterprise Office Analytics installation in a Windows environment, this paper walks the reader through all of the basic metadata relationships and how they are created, thus unraveling the mystery of how the host system, external databases, and SAS work together to provide users what they need, while reliably enforcing the appropriate security.
Read the paper (PDF).
Charyn Faenza, F.N.B. Corporation
Paper SAS4081-2015:
SAS® Workshop: SAS® Visual Statistics 7.1
This workshop provides hands-on experience with SAS® Visual Statistics. Workshop participants will learn to: move between the Visual Analytics Explorer interface and Visual Statistics, fit automatic statistical models, create exploratory statistical analysis, compare models using a variety of metrics, and create score code.
Read the paper (PDF).
Catherine Truxillo, SAS
Xiangxiang Meng, SAS
Mike Jenista, SAS
Paper 3153-2015:
Sponsored Free Wi-Fi Using Mobile Marketing and Big Data Analytics
The era of mass marketing is over. Welcome to the new age of relevant marketing where whispering matters far more than shouting.' At ZapFi, using the combination of sponsored free Wi-Fi and real-time consumer analytics,' we help businesses to better understand who their customers are. This gives businesses the opportunity to send highly relevant marketing messages based on the profile and the location of the customer. It also leads to new ways to build deeper and more intimate, one-on-one relationships between the business and the customer. During this presentation, ZapFi will use a few real-world examples to demonstrate that the future of mobile marketing is much more about data and far less about advertising.
Read the paper (PDF).
Gery Pollet, ZapFi
Paper 3478-2015:
Stress Testing for Mid-Sized Banks
In 2014, for the first time, mid-market banks (consisting of banks and bank holding companies with $10-$50 billion in consolidated assets) were required to submit Capital Stress Tests to the federal regulators under the Dodd-Frank Act Stress Testing (DFAST). This is a process large banks have been going through since 2011. However, mid-market banks are not positioned to commit as many resources to their annual stress tests as their largest peers. Limited human and technical resources, incomplete or non-existent detailed historical data, lack of enterprise-wide cross-functional analytics teams, and limited exposure to rigorous model validations are all challenges mid-market banks face. While there are fewer deliverables required from the DFAST banks, the scrutiny the regulators are placing on the analytical modes is just as high as their expectations for Comprehensive Capital Analysis and Review (CCAR) banks. This session discusses the differences in how DFAST and CCAR banks execute their stress tests, the challenges facing DFAST banks, and potential ways DFAST banks can leverage the analytics behind this exercise.
Read the paper (PDF).
Charyn Faenza, F.N.B. Corporation
T
Paper 3488-2015:
Text Analytics on Electronic Medical Record Data
This session describes our journey from data acquisition to text analytics on clinical, textual data.
Mark Pitts, Highmark Health
Paper 3860-2015:
The Challenges with Governing Big Data: How SAS® Can Help
In this session, I discuss an overall approach to governing Big Data. I begin with an introduction to Big Data governance and the governance framework. Then I address the disciplines of Big Data governance: data ownership, metadata, privacy, data quality, and master and reference data management. Finally, I discuss the reference architecture of Big Data, and how SAS® tools can address Big Data governance.
Sunil Soares, Information Asset
Paper SPON3000-2015:
The New Analytics Experience at SAS®--an Analytics Culture Driven by Millennials
This unique culture has access to lots of data, unstructured and structured; is innovative, experimental, groundbreaking, and doesn't follow convention; and has access to powerful new infrastructure technologies and scalable, industry-standard computing power like never seen before. The convergence of data, and innovative spirit, and the means to process it is what makes this a truly unique culture. In response to that, SAS® proposes The New Analytics Experience. Attend this session to hear more about the New Analytics Experience and the latest Intel technologies that make it possible.
Mark Pallone, Intel
Paper 3353-2015:
The SAS® Transformation Project--Deploying SAS Customer Intelligence for a Single View of the Customer
Building a holistic view of the customer is becoming the norm across industries. The financial services industry and retail firms have been at the forefront of striving for this goal. Firm ABC is a large insurance firm based in the United States. It uses multiple campaign management platforms across different lines of business. Marketing campaigns are deployed in isolation. Similarly, responses are tracked and attributed in silos. This prevents the firm from obtaining a holistic view of its customers across products and lines of business and leads to gaps and inefficiencies in data management, campaign management, reporting, and analytics. Firm ABC needed an enterprise-level solution that addressed how to integrate with different types of data sources (both external and internal) and grow as a scalable and agile marketing and analytics organization; how to deploy campaign and contact management using a centralized platform to reduce overlap and redundancies and deliver a more coordinated marketing messaging to customers; how to perform more accurate attribution that, in turn, drives marketing measurement and planning; how to implement more sophisticated and visual self-service reporting that enables business users to make marketing decisions; and how to build advanced analytics expertise in-house. The solution needed to support predictive modeling, segmentation, and targeting. Based on these challenges and requirements, the firm conducted an extensive RFP process and reviewed various vendors in the enterprise marketing and business intelligence space. Ultimately, SAS® Customer Intelligence and SAS® Enterprise BI were selected to help the firm achieve its goals and transition to a customer-centric organization. The ability for SAS® to deliver a custom-hosted solution was one of the key drivers for this decision, along with its experience in the financial services and insurance industries. Moreover, SAS can provide the much-needed flexibility and scala bility, whether it is around integrating external vendors, credit data, and mail-shop processing, or managing sensitive customer information. This presentation provides detailed insight on the various modules being implemented by the firm, how they will be leveraged to address the goals, and what their roles are in the future architecture. The presentation includes detailed project implementation and provides insights, best practices, and challenges faced during the project planning, solution design, governance, and development and production phases. The project team included marketers, campaign managers, data analysts, business analysts, and developers with sponsorship and participation from the C suite. The SAS® Transformation Project provides insights and best practices that prove useful for business users, IT teams, and senior management. The scale, timing, and complexity of the solution deployment make it an interesting and relevant case study, not only for financial clients, but also for any large firm that has been tasked with understanding its customers and building a holistic customer profile.
Read the paper (PDF).
Ronak Shah, Slalom Consulting
Minza Zahid, Slalom Consulting
U
Paper 4241-2015:
Understand Your Customers and Their Business
Understanding your customer will allow you to create, rollout, or implement meaningful, value-added processes and tools to assist in increasing revenue, simplify or standardize processes, and increase productivity. This session will guide you on how to engage your customer, observe and discern their needs, then ultimately deliver and transition your product.
Brenda Carr, Hudson's Bay Company
Paper 4640-2015:
Using Analytics to Become The USA Memory Champion
Becoming one of the best memorizers in the world doesn't happen overnight. With hard work, dedication, a bit of obsession, and with the assistance of some clever analytics metrics, Nelson Dellis was able to climb himself up to the top of the memory rankings in under a year to become the now 3x USA Memory Champion. In this talk, he explains what it takes to become the best at memory, what is involved in such grueling memory competitions, and how analytics helped him get there.
Nelson Dellis, Climb for Memory
Paper 3503-2015:
Using SAS® Enterprise Guide®, SAS® Enterprise Miner™, and SAS® Marketing Automation to Make a Collection Campaign Smarter
Companies are increasingly relying on analytics as the right solution to their problems. In order to use analytics and create value for the business, companies first need to store, transform, and structure the data to make it available and functional. This paper shows a successful business case where the extraction and transformation of the data combined with analytical solutions were developed to automate and optimize the management of the collections cycle for a TELCO company (DIRECTV Colombia). SAS® Data Integration Studio is used to extract, process, and store information from a diverse set of sources. SAS Information Map is used to integrate and structure the created databases. SAS® Enterprise Guide® and SAS® Enterprise Miner™ are used to analyze the data, find patterns, create profiles of clients, and develop churn predictive models. SAS® Customer Intelligence Studio is the platform on which the collection campaigns are created, tested, and executed. SAS® Web Report Studio is used to create a set of operational and management reports.
Read the paper (PDF).
Darwin Amezquita, DIRECTV
Paulo Fuentes, Directv Colombia
Andres Felipe Gonzalez, Directv
V
Paper 3475-2015:
Video Killed the Radio Star
How do you serve 25 million video ads a day to Internet users in 25 countries, while ensuring that you target the right ads to the right people on the right websites at the right time? With a lot of help from math, that's how! Come hear how Videology, an Internet advertising company, combines mathematical programming, predictive modeling, and big data techniques to meet the expectations of advertisers and online publishers, while respecting the privacy of online users and combatting fraudulent Internet traffic.
Kaushik Sinha, Videology
back to top