Getting Started Example for PROC CAUSALTRT
/****************************************************************/
/* S A S S A M P L E L I B R A R Y */
/* */
/* NAME: CTRTGS */
/* TITLE: Getting Started Example for PROC CAUSALTRT */
/* PRODUCT: STAT */
/* SYSTEM: ALL */
/* KEYS: Inverse probability weights */
/* PROCS: CAUSALTRT */
/* DATA: */
/* */
/* SUPPORT: milamm */
/* REF: PROC CAUSALTRT, GETTING STARTED EXAMPLE */
/* MISC: */
/****************************************************************/
data drug1;
do jorder=1 to 490;
if (ranuni(99) < .55) then Gender='Male ';
else Gender='Female';
Age= 30 + 20*ranuni(99) + 3*rannor(9);
if (Age < 25) then Age= 20 - (Age-25)/2;
Age= int(Age);
BMI= 20 + 6*ranuni(99) + 0.02*Age + rannor(9);
if (BMI < 18) then BMI= 18 - (BMI-18)/4;
BMI= int(BMI*100) / 100;
pscore= 4. - 0.25*Age + 0.2*BMI + 0.02*rannor(99);
if (Gender='Female') then pscore= pscore - 0.2;
output;
end;
run;
proc sort data=drug1 out=drug2;
by pscore;
run;
proc rank data=drug2 out=drug3 descending;
var pscore;
ranks porder;
run;
data drug4;
set drug3;
if (porder < 150) then do;
if (ranuni(99) < .45) then Drug= 'Drug_X';
else Drug= 'Drug_A';
end;
else if (porder < 300) then do;
if (ranuni(99) < .35) then Drug= 'Drug_X';
else Drug= 'Drug_A';
end;
else if (porder < 450) then do;
if (ranuni(99) < .25) then Drug= 'Drug_X';
else Drug= 'Drug_A';
end;
else Drug= 'Drug_A';
run;
data drug5;
set drug4;
if (porder > 4);
run;
proc sort data=drug5 out=drugs (keep=Drug Gender Age BMI);
by jorder;
run;
data drug6;
set drug5;
pdev = -.1 + .02*age;
if (Drug = 'Drug_X') then pdev = pdev -.2;
if (Gender = 'Male') then pdev = pdev - .1;
psdev = exp(pdev)/(1+exp(pdev));
if (pdev > ranuni(99)) then Diabetes2 = 'Yes';
else Diabetes2 = 'No';
run;
proc sort data=drug6 out=drugs (keep=Drug Gender Age BMI Diabetes2);
by jorder;
run;
proc print data=drugs(obs=10);
run;
proc causaltrt data=drugs method=ipwr ppsmodel;
class Gender;
psmodel Drug(ref='Drug_A') = Age Gender BMI;
model Diabetes2(ref='No') / dist = bin;
run;
proc causaltrt data=drugs method=aipw;
class Gender;
psmodel Drug(ref='Drug_A') = Age Gender BMI;
model Diabetes2(ref='No') = Age Gender BMI / dist = bin;
run;