Select Your Region
Americas
Europe
Middle East & Africa
Asia Pacific
![]() |
/****************************************************************/ /* S A S S A M P L E L I B R A R Y */ /* */ /* NAME: ADXEG7 */ /* TITLE: A Textile Study */ /* PRODUCT: QC */ /* SYSTEM: ALL */ /* KEYS: Design of Experiments,Factorial Designs */ /* PROCS: */ /* DATA: */ /* REF: Box, G.E.P., and Cox, D.R. "An Analysis of */ /* Transformations". Journal of the Royal */ /* Statistical Society, B-26, pp. 211-243. */ /* MISC: ADX Macros are stored in the AUTOCALL library */ /* */ /* A simple 3**3 design was used to study the effects different */ /* factors on the failure of a yarn manufacturing process. The */ /* design factors are */ /* * the length of test specimins of yarn, ranging from 250 */ /* to 350 mm, */ /* * the amplitude of the loading cycle, ranging from 8 to */ /* 10 mm, */ /* * the load, ranging from 40 to 50 grams. */ /* The measured response was time (in cycles) until failure, */ /* but it could as easily have been the inverse of this */ /* quantity, the failure rate. An analysis using %adxtrans */ /* reveals a clear optimum power transformation right around */ /* the log transform. */ /* */ /****************************************************************/ /*--------------------------------------------------------------*/ /* EXAMPLE 7: A TEXTILE STUDY */ /* SOURCE: BOX AND COX (1964). */ /*--------------------------------------------------------------*/ /* / For this example, we need only general macros, since we will / use FACTEX itself to create the design: if we haven't already / included them, we do so now. /---------------------------------------------------------------*/ %adxgen; %adxinit /* Initialize ADX environment. */ /* / The design itself is a simple 3**3 factorial: we use FACTEX / directly. /---------------------------------------------------------------*/ proc factex; factors len amp load / nlev=3; output out=yarn len nvals=(250 300 350) amp nvals=( 8 9 10) load nvals=( 40 45 50); run; /* / Normally, we would want to write a report which will print / the runs in the design in a randomized order and provide space / for a researcher to fill in the values of the response: use the / following to do this: / %adxrprt(yarn,failcyc) / Assuming this has been done, we add the data to the design / with the following DATA step. /---------------------------------------------------------------*/ data yarn; set yarn; input failcyc @@; output; cards; 674 370 292 338 266 210 170 118 90 1414 1198 634 1022 620 438 442 332 220 3636 3184 2000 1568 1070 566 1140 884 360 ; /* / We need to recode this data so that we can analyze it. /---------------------------------------------------------------*/ %adxcode(yarn,yarn,len amp load) /* / Create the cross-product and squared terms of the second order / model. /---------------------------------------------------------------*/ %adxqmod(yarn,yarn,len amp load,1) /* / And do the transformation analysis, relying on the default / model set up by %adxqmod. /---------------------------------------------------------------*/ %adxtrans(yarn,tranyarn,failcyc) /*--------------------------------------------------------------*/ /* */ /* The estimated power transformation is lambda = -0.2, but the */ /* 95 % confidence interval contains lambda = 0, which */ /* corresponds to the log transform. The analysis indicates */ /* that the transformation really *is* required: not only does */ /* the residual mean square dip sharply in the neighborhood of */ /* the optimum, but whereas almost *all 10* of the parameters */ /* of the model are significant when the original responses are */ /* analyzed, only the four of them are with respect to the */ /* transformed data, the intercept and the three linear effects */ /* of the factors. In this case, working with the data in the */ /* original metric clouds the issue and impedes scientific */ /* understanding of the underlying process. */ /* */ /*--------------------------------------------------------------*/ /* / If you have SAS/GRAPH licensed, try the following code to / produce a high-resolution plot of the T-values for the / parameters versus lambda. / symbol1 i=spline; symbol2 i=spline; symbol3 i=spline; / symbol4 i=spline; symbol5 i=spline; symbol6 i=spline; / symbol7 i=spline; symbol8 i=spline; symbol9 i=spline; / symbol10 i=spline; / proc gplot data=adxreg; / plot (intercept &adxfit)*adxlam / overlay; / run; /---------------------------------------------------------------*/