The data for this example is taken from Smith (1951). A Latin square design is used to evaluate six different sugar beet varieties arranged in a six-row (Rep
) by six-column (Column
) square. The data are collected over two harvests. The variable Harvest
then becomes a split plot on the original Latin square design for whole plots. The following statements produce Output 26.4.1, Output 26.4.2, and Output 26.4.3:
title1 'Sugar Beet Varieties'; title3 'Latin Square Split-Plot Design'; data Beets; do Harvest=1 to 2; do Rep=1 to 6; do Column=1 to 6; input Variety Y @; output; end; end; end; datalines; 3 19.1 6 18.3 5 19.6 1 18.6 2 18.2 4 18.5 6 18.1 2 19.5 4 17.6 3 18.7 1 18.7 5 19.9 1 18.1 5 20.2 6 18.5 4 20.1 3 18.6 2 19.2 2 19.1 3 18.8 1 18.7 5 20.2 4 18.6 6 18.5 4 17.5 1 18.1 2 18.7 6 18.2 5 20.4 3 18.5 5 17.7 4 17.8 3 17.4 2 17.0 6 17.6 1 17.6 3 16.2 6 17.0 5 18.1 1 16.6 2 17.7 4 16.3 6 16.0 2 15.3 4 16.0 3 17.1 1 16.5 5 17.6 1 16.5 5 18.1 6 16.7 4 16.2 3 16.7 2 17.3 2 17.5 3 16.0 1 16.4 5 18.0 4 16.6 6 16.1 4 15.7 1 16.1 2 16.7 6 16.3 5 17.8 3 16.2 5 18.3 4 16.6 3 16.4 2 17.6 6 17.1 1 16.5 ;
proc anova data=Beets; class Column Rep Variety Harvest; model Y=Rep Column Variety Rep*Column*Variety Harvest Harvest*Rep Harvest*Variety; test h=Rep Column Variety e=Rep*Column*Variety; test h=Harvest e=Harvest*Rep; run;
Output 26.4.1: Class Level Information
Output 26.4.2: ANOVA Table
Source | DF | Anova SS | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
Rep | 5 | 4.32069444 | 0.86413889 | 2.90 | 0.0337 |
Column | 5 | 1.57402778 | 0.31480556 | 1.06 | 0.4075 |
Variety | 5 | 20.61902778 | 4.12380556 | 13.84 | <.0001 |
Column*Rep*Variety | 20 | 3.25444444 | 0.16272222 | 0.55 | 0.9144 |
Harvest | 1 | 60.68347222 | 60.68347222 | 203.68 | <.0001 |
Rep*Harvest | 5 | 7.71736111 | 1.54347222 | 5.18 | 0.0021 |
Variety*Harvest | 5 | 0.74569444 | 0.14913889 | 0.50 | 0.7729 |
First, note from Output 26.4.2 that the overall model is significant.
Output 26.4.3: Tests of Effects
Output 26.4.3 shows that the effects for Rep
and Harvest
are significant, while the Column
effect is not. The average Y
s for the six different Variety
s are significantly different. For these four tests, look at the output produced by the two TEST
statements, not at the usual ANOVA procedure output. The Variety
*Harvest
interaction is not significant. All other effects in the default output should either be tested by using the results from
the TEST
statements or are irrelevant as they are only error terms for portions of the model.