

The section Univariate Distributions (Table 55.7 through Table 55.34) lists all univariate distributions that PROC MCMC recognizes. The section Multivariate Distributions (Table 55.35 through Table 55.39) lists all multivariate distributions that PROC MCMC recognizes. With the exception of the multinomial distribution, all these distributions can be used in the MODEL, PRIOR, and HYPERPRIOR statements. The multinomial distribution is supported only in the MODEL statement. The RANDOM statement supports a limited number of distributions; see Table 55.4 for the complete list.
See the section Using Density Functions in the Programming Statements for information about how to use distributions in the programming statements. To specify an arbitrary distribution, you can use the GENERAL and DGENERAL functions. See the section Specifying a New Distribution for more details. See the section Truncation and Censoring for tips about how to work with truncated distributions and censoring data.
Table 55.7: Beta Distribution
Table 55.8: Binary Distribution
|
PROC specification |
binary(p) |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
round |
|
Variance |
|
|
Mode |
|
|
Random number |
Generate |
Table 55.9: Binomial Distribution
|
PROC specification |
binomial(n, p) |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
|
Table 55.10: Cauchy Distribution
|
PROC specification |
cauchy(a, b) |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
Does not exist. |
|
Variance |
Does not exist. |
|
Mode |
a |
|
Random number |
Generate |
Table 55.11:
Distribution
|
PROC specification |
chisq( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
|
|
Random number |
|
Table 55.12: Exponential
Distribution
|
PROC specification |
expchisq( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mode |
|
|
Random number |
Generate |
|
Relationship to the |
|
Table 55.13: Exponential Exponential Distribution
|
PROC specification |
expexpon( |
expexpon( |
|
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
|
Mode |
|
|
|
Random number |
Generate |
|
|
Relationship to the exponential distribution |
|
|
Table 55.14: Exponential Gamma Distribution
|
PROC specification |
expgamma(a, |
expgamma(a, |
|
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
|
Mode |
|
|
|
Random number |
Generate |
|
|
Relationship to the |
|
|
Table 55.15: Exponential Inverse
Distribution
|
PROC specification |
expichisq( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mode |
|
|
Random number |
Generate |
|
Relationship to the |
|
Table 55.16: Exponential Inverse-Gamma Distribution
|
PROC specification |
expigamma(a, |
expigamma(a, |
|
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
|
Mode |
|
|
|
Random number |
Generate |
|
|
Relationship to the |
|
|
Table 55.17: Exponential Scaled Inverse
Distribution
|
PROC specification |
expsichisq( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mode |
|
|
Random number |
Generate |
|
Relationship to the |
|
Table 55.18: Exponential Distribution
|
PROC specification |
expon( |
expon( |
|
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
|
Mean |
b |
|
|
Variance |
|
|
|
Mode |
0 |
0 |
|
Random number |
The exponential distribution is a special case of the gamma distribution: |
|
Table 55.19: Gamma Distribution
|
PROC specification |
gamma(a, |
gamma(a, |
|
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
|
Mean |
ab |
|
|
Variance |
|
|
|
Mode |
|
|
|
Random number |
See (McGrath and Irving, 1973). |
|
Table 55.20: Geometric Distribution
|
PROC specification |
geo(p) |
||||||||||||||||||||||||||||||||||||||||||||||||
|
Density [a] |
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
Parameter restriction |
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
Range |
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
Mean |
round( |
||||||||||||||||||||||||||||||||||||||||||||||||
|
Variance |
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
Mode |
0 |
||||||||||||||||||||||||||||||||||||||||||||||||
|
Random number |
Based on samples obtained from a Bernoulli distribution with probability p until the first success. |
||||||||||||||||||||||||||||||||||||||||||||||||
|
[a] The random variable |
|||||||||||||||||||||||||||||||||||||||||||||||||
Table 55.21: Inverse
Distribution
|
PROC specification |
ichisq( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
|
|
Random number |
Inverse |
Table 55.22: Inverse-Gamma Distribution
|
PROC specification |
igamma(a, |
igamma(a, |
|
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
|
Mean |
|
|
|
Variance |
|
|
|
Mode |
|
|
|
Random number |
Generate |
|
|
Relationship to the gamma distribution |
|
|
Table 55.23: Laplace (Double Exponential) Distribution
|
PROC specification |
laplace(a, |
laplace(a, |
|
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
|
Mean |
a |
a |
|
Variance |
|
|
|
Mode |
a |
a |
|
Random number |
Inverse CDF. |
|
Table 55.24: Logistic Distribution
|
PROC specification |
logistic(a, b) |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
a |
|
Variance |
|
|
Mode |
a |
|
Random number |
Inverse CDF method with |
Table 55.25: Lognormal Distribution
|
PROC specification |
lognormal( |
lognormal( |
lognormal( |
|
Density |
|
|
|
|
Parameter restriction |
|
|
|
|
Range |
|
Same |
Same |
|
Mean |
|
|
|
|
Variance |
|
|
|
|
Mode |
|
|
|
|
Random number |
Generate |
||
Table 55.26: Negative Binomial Distribution
|
PROC specification |
negbin(n, p) |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
round |
|
Variance |
|
|
Mode |
|
|
Random number |
Generate |
Table 55.27: Normal Distribution
|
PROC specification |
normal( |
normal( |
normal( |
|
Density |
|
|
|
|
Parameter restriction |
|
|
|
|
Range |
|
Same |
Same |
|
Mean |
|
Same |
Same |
|
Variance |
|
v |
|
|
Mode |
|
Same |
Same |
Table 55.28: Pareto Distribution
|
PROC specification |
pareto(a, b) |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
b |
|
Random number |
Inverse CDF method with |
|
Useful transformation |
|
Table 55.29: Poisson Distribution
|
PROC specification |
poisson( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
round |
Table 55.30: Scaled Inverse
Distribution
|
PROC specification |
sichisq( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
|
|
Random number |
Scaled inverse |
Table 55.31: t Distribution
|
PROC specification |
t( |
t( |
t( |
|
Density |
|
|
|
|
Parm restriction |
|
|
|
|
Range |
|
Same |
Same |
|
Mean |
|
Same |
Same |
|
Variance |
|
|
|
|
Mode |
|
Same |
Same |
|
Random number |
|
||
Table 55.32: Uniform Distribution
Table 55.33: Wald Distribution
|
PROC specification |
wald( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
|
|
Random number |
Generate |
Table 55.34: Weibull Distribution
|
PROC specification |
weibull( |
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Variance |
|
|
Mode |
|
|
Random number |
Inverse CDF method with |
Table 55.35: Dirichlet Distribution
|
PROC specification |
|
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Mode |
|
Table 55.36: Inverse Wishart Distribution
|
PROC specification |
|
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Mode |
|
Table 55.37: Multivariate Normal Distribution
|
PROC specification |
|
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|
|
Mode |
|
Table 55.38: Autoregressive Multivariate Normal Distribution
|
PROC specification |
|
|
|
|
|
Density |
|
|||
|
Parameter restriction |
|
|||
|
Range |
|
|||
|
Mean |
|
|||
|
Mode |
|
|||
|
Special Case |
When |
|||
Table 55.39: Multinomial Distribution
|
PROC specification |
|
|
Density |
|
|
Parameter restriction |
|
|
Range |
|
|
Mean |
|