Previous Page | Next Page

The PHREG Procedure

Example 64.13 Bayesian Analysis of the Cox Model

This example illustrates the use of an informative prior. Hazard ratios, which are transformations of the regression parameters, are useful for interpreting survival models. This example also demonstrates the use of the HAZARDRATIO statement to obtain customized hazard ratios.

Consider the VALung data set in Example 64.3. In this example, the Cox model is used for the Bayesian analysis. The parameters are the coefficients of the continuous explanatory variables (Kps, Duration, and Age) and the coefficients of the design variables for the categorical explanatory variables (Prior, Cell, and Therapy). You use the CLASS statement in PROC PHREG to specify the categorical variables and their reference levels. Using the default reference parameterization, the design variables for the categorical variables are Prioryes (for Prior with Prior=’no’ as reference), Celladeno, Cellsmall, Cellsquamous (for Cell with Cell=’large’ as reference), and Therapytest (for Therapy=’standard’ as reference).

Consider the explanatory variable Kps. The Karnofsky performance scale index enables patients to be classified according to their functional impairment. The scale can range from 0 to 100—0 for dead, and 100 for a normal, healthy person with no evidence of disease. Recall that a flat prior was used for the regression coefficient in the example in the section Bayesian Analysis. A flat prior on the Kps coefficient implies that the coefficient is as likely to be 0.1 as it is to be –100000. A coefficient of –5 means that a decrease of 20 points in the scale increases the hazard by (=2.68 )-fold, which is a rather unreasonable and unrealistic expectation for the effect of the Karnofsky index, much less than the value of –100000. Suppose you have a more realistic expectation: the effect is somewhat small and is more likely to be negative than positive, and a decrease of 20 points in the Karnofsky index will change the hazard from 0.9-fold (some minor positive effect) to 4-fold (a large negative effect). You can convert this opinion to a more informative prior on the Kps coefficient . Mathematically,

     

which is equivalent to

     

This becomes the plausible range that you believe the Kps coefficient can take. Now you can find a normal distribution that best approximates this belief by placing the majority of the prior distribution mass within this range. Assuming this interval is , where and are the mean and standard deviation of the normal prior, respectively, the hyperparameters and are computed as follows:

     
     

Note that a normal prior distribution with mean –0.0320 and standard deviation 0.0186 indicates that you believe, before looking at the data, that a decrease of 20 points in the Karnofsky index will probably change the hazard rate by 0.9-fold to 4-fold. This does not rule out the possibility that the Kps coefficient can take a more extreme value such as –5, but the probability of having such extreme values is very small.

Assume the prior distributions are independent for all the parameters. For the coefficient of Kps, you use a normal prior distribution with mean –0.0320 and variance =0.00035). For other parameters, you resort to using a normal prior distribution with mean 0 and variance , which is fairly noninformative. Means and variances of these independent normal distributions are saved in the data set Prior as follows:

proc format;
   value yesno 0='no' 10='yes';
   run;
 
data VALung;
   drop check m;
   retain Therapy Cell;
   infile cards column=column;
   length Check $ 1;
   label Time='time to death in days'
         Kps='Karnofsky performance scale'
         Duration='months from diagnosis to randomization'
         Age='age in years'
         Prior='prior therapy'
         Cell='cell type'
         Therapy='type of treatment';
   format Prior yesno.;
   M=Column;
   input Check $ @@;
   if M>Column then M=1;
   if Check='s'|Check='t' then do;
      input @M Therapy $ Cell $;
      delete;
      end;
   else do;
      input @M Time Kps Duration Age Prior @@;
      Status=(Time>0);
      Time=abs(Time);
      end;
   datalines;
standard squamous
 72 60  7 69  0   411 70  5 64 10   228 60  3 38  0   126 60  9 63 10
118 70 11 65 10    10 20  5 49  0    82 40 10 69 10   110 80 29 68  0
314 50 18 43  0  -100 70  6 70  0    42 60  4 81  0     8 40 58 63 10
144 30  4 63  0   -25 80  9 52 10    11 70 11 48 10
standard small
 30 60  3 61  0   384 60  9 42  0     4 40  2 35  0    54 80  4 63 10
 13 60  4 56  0  -123 40  3 55  0   -97 60  5 67  0   153 60 14 63 10
 59 30  2 65  0   117 80  3 46  0    16 30  4 53 10   151 50 12 69  0
 22 60  4 68  0    56 80 12 43 10    21 40  2 55 10    18 20 15 42  0
139 80  2 64  0    20 30  5 65  0    31 75  3 65  0    52 70  2 55  0
287 60 25 66 10    18 30  4 60  0    51 60  1 67  0   122 80 28 53  0
 27 60  8 62  0    54 70  1 67  0     7 50  7 72  0    63 50 11 48  0
392 40  4 68  0    10 40 23 67 10
standard adeno
  8 20 19 61 10    92 70 10 60  0    35 40  6 62  0   117 80  2 38  0
132 80  5 50  0    12 50  4 63 10   162 80  5 64  0     3 30  3 43  0
 95 80  4 34  0
standard large
177 50 16 66 10   162 80  5 62  0   216 50 15 52  0   553 70  2 47  0
278 60 12 63  0    12 40 12 68 10   260 80  5 45  0   200 80 12 41 10
156 70  2 66  0  -182 90  2 62  0   143 90  8 60  0   105 80 11 66  0
103 80  5 38  0   250 70  8 53 10   100 60 13 37 10
test squamous
999 90 12 54 10   112 80  6 60  0   -87 80  3 48  0  -231 50  8 52 10
242 50  1 70  0   991 70  7 50 10   111 70  3 62  0     1 20 21 65 10
587 60  3 58  0   389 90  2 62  0    33 30  6 64  0    25 20 36 63  0
357 70 13 58  0   467 90  2 64  0   201 80 28 52 10     1 50  7 35  0
 30 70 11 63  0    44 60 13 70 10   283 90  2 51  0    15 50 13 40 10
test small
 25 30  2 69  0  -103 70 22 36 10    21 20  4 71  0    13 30  2 62  0
 87 60  2 60  0     2 40 36 44 10    20 30  9 54 10     7 20 11 66  0
 24 60  8 49  0    99 70  3 72  0     8 80  2 68  0    99 85  4 62  0
 61 70  2 71  0    25 70  2 70  0    95 70  1 61  0    80 50 17 71  0
 51 30 87 59 10    29 40  8 67  0
test adeno
 24 40  2 60  0    18 40  5 69 10   -83 99  3 57  0    31 80  3 39  0
 51 60  5 62  0    90 60 22 50 10    52 60  3 43  0    73 60  3 70  0
  8 50  5 66  0    36 70  8 61  0    48 10  4 81  0     7 40  4 58  0
140 70  3 63  0   186 90  3 60  0    84 80  4 62 10    19 50 10 42  0
 45 40  3 69  0    80 40  4 63  0
test large
 52 60  4 45  0   164 70 15 68 10    19 30  4 39 10    53 60 12 66  0
 15 30  5 63  0    43 60 11 49 10   340 80 10 64 10   133 75  1 65  0
111 60  5 64  0   231 70 18 67 10   378 80  4 65  0    49 30  3 37  0
;
data Prior;
   input _TYPE_ $ Kps Duration Age Prioryes Celladeno Cellsmall
         Cellsquamous Therapytest;
   datalines;
   Mean -0.0320 0 0 0 0 0 0 0
   Var  0.00035 1e6 1e6 1e6 1e6 1e6 1e6 1e6
   ;
run;

In the following BAYES statement, COEFFPRIOR=NORMAL(INPUT=Prior) specifies the normal prior distribution for the regression coefficients with details contained in the data set Prior. Summary statistics of the posterior distribution are produced by default. Autocorrelations and effective sample size are requested as convergence diagnostics as well as the trace plots for visual analysis. For comparisons of hazards, three HAZARDRATIO statements are specified—one for the variable Therapy, one for the variable Age, and one for the variable Cell.


ods graphics on;
proc phreg data=VALung;
   class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
   model Time*Status(0) = Kps Duration Age Prior Cell Therapy;
   bayes seed=1 coeffprior=normal(input=Prior) diagnostic=(autocorr ess)
         plots=trace;
   hazardratio 'Hazard Ratio Statement 1' Therapy;
   hazardratio 'Hazard Ratio Statement 2' Age / unit=10;
   hazardratio 'Hazard Ratio Statement 3' Cell;
run;
ods graphics off;

This analysis generates a posterior chain of 10,000 iterations after 2,000 iterations of burn-in, as depicted in Output 64.13.1.

Output 64.13.1 Model Information
The PHREG Procedure
 
Bayesian Analysis

Model Information
Data Set WORK.VALUNG  
Dependent Variable Time time to death in days
Censoring Variable Status  
Censoring Value(s) 0  
Model Cox  
Ties Handling BRESLOW  
Sampling Algorithm ARMS  
Burn-In Size 2000  
MC Sample Size 10000  
Thinning 1  

Output 64.13.2 displays the names of the parameters and their corresponding effects and categories.

Output 64.13.2 Parameter Names
Regression Parameter Information
Parameter Effect Prior Cell Therapy
Kps Kps      
Duration Duration      
Age Age      
Prioryes Prior yes    
Celladeno Cell   adeno  
Cellsmall Cell   small  
Cellsquamous Cell   squamous  
Therapytest Therapy     test

PROC PHREG computes the maximum likelihood estimates of regression parameters (Output 64.13.3). These estimates are used as the starting values for the simulation of posterior samples.

Output 64.13.3 Parameter Estimates
Maximum Likelihood Estimates
Parameter DF Estimate Standard
Error
95% Confidence Limits
Kps 1 -0.0326 0.00551 -0.0434 -0.0218
Duration 1 -0.00009 0.00913 -0.0180 0.0178
Age 1 -0.00855 0.00930 -0.0268 0.00969
Prioryes 1 0.0723 0.2321 -0.3826 0.5273
Celladeno 1 0.7887 0.3027 0.1955 1.3819
Cellsmall 1 0.4569 0.2663 -0.0650 0.9787
Cellsquamous 1 -0.3996 0.2827 -0.9536 0.1544
Therapytest 1 0.2899 0.2072 -0.1162 0.6961

Output 64.13.4 displays the independent normal prior for the analysis.

Output 64.13.4 Coefficient Prior
Independent Normal Prior for Regression
Coefficients
Parameter Mean Precision
Kps -0.032 2857.143
Duration 0 1E-6
Age 0 1E-6
Prioryes 0 1E-6
Celladeno 0 1E-6
Cellsmall 0 1E-6
Cellsquamous 0 1E-6
Therapytest 0 1E-6

Fit statistics are displayed in Output 64.13.5. These statistics are useful for variable selection.

Output 64.13.5 Fit Statistics
Fit Statistics
DIC (smaller is better) 966.260
pD (Effective Number of Parameters) 7.934

Summary statistics of the posterior samples are shown in Output 64.13.6 and Output 64.13.7. These results are quite comparable to the classical results based on maximizing the likelihood as shown in Output 64.13.3, since the prior distribution for the regression coefficients is relatively flat.

Output 64.13.6 Summary Statistics
The PHREG Procedure
 
Bayesian Analysis

Posterior Summaries
Parameter N Mean Standard
Deviation
Percentiles
25% 50% 75%
Kps 10000 -0.0326 0.00523 -0.0362 -0.0326 -0.0291
Duration 10000 -0.00159 0.00954 -0.00756 -0.00093 0.00504
Age 10000 -0.00844 0.00928 -0.0147 -0.00839 -0.00220
Prioryes 10000 0.0742 0.2348 -0.0812 0.0737 0.2337
Celladeno 10000 0.7881 0.3065 0.5839 0.7876 0.9933
Cellsmall 10000 0.4639 0.2709 0.2817 0.4581 0.6417
Cellsquamous 10000 -0.4024 0.2862 -0.5927 -0.4025 -0.2106
Therapytest 10000 0.2892 0.2038 0.1528 0.2893 0.4240

Output 64.13.7 Interval Statistics
Posterior Intervals
Parameter Alpha Equal-Tail Interval HPD Interval
Kps 0.050 -0.0429 -0.0222 -0.0433 -0.0226
Duration 0.050 -0.0220 0.0156 -0.0210 0.0164
Age 0.050 -0.0263 0.00963 -0.0265 0.00941
Prioryes 0.050 -0.3936 0.5308 -0.3832 0.5384
Celladeno 0.050 0.1879 1.3920 0.1764 1.3755
Cellsmall 0.050 -0.0571 1.0167 -0.0888 0.9806
Cellsquamous 0.050 -0.9687 0.1635 -0.9641 0.1667
Therapytest 0.050 -0.1083 0.6930 -0.1284 0.6710

With autocorrelations retreating quickly to 0 (Output 64.13.8) and large effective sample sizes (Output 64.13.9), both diagnostics indicate a reasonably good mixing of the Markov chain. The trace plots in Output 64.13.10 also confirm the convergence of the Markov chain.

Output 64.13.8 Autocorrelation Diagnostics
The PHREG Procedure
 
Bayesian Analysis

Posterior Autocorrelations
Parameter Lag 1 Lag 5 Lag 10 Lag 50
Kps 0.1442 -0.0016 0.0096 -0.0013
Duration 0.2672 -0.0054 -0.0004 -0.0011
Age 0.1374 -0.0044 0.0129 0.0084
Prioryes 0.2507 -0.0271 -0.0012 0.0004
Celladeno 0.4160 0.0265 -0.0062 0.0190
Cellsmall 0.5055 0.0277 -0.0011 0.0271
Cellsquamous 0.3586 0.0252 -0.0044 0.0107
Therapytest 0.2063 0.0199 -0.0047 -0.0166

Output 64.13.9 Effective Sample Size Diagnostics
Effective Sample Sizes
Parameter ESS Autocorrelation
Time
Efficiency
Kps 7046.7 1.4191 0.7047
Duration 5790.0 1.7271 0.5790
Age 7426.1 1.3466 0.7426
Prioryes 6102.2 1.6388 0.6102
Celladeno 3673.4 2.7223 0.3673
Cellsmall 3346.4 2.9883 0.3346
Cellsquamous 4052.8 2.4674 0.4053
Therapytest 6870.8 1.4554 0.6871

Output 64.13.10 Trace Plots
Trace Plots

cox_tracepanel1__

cox_tracepanel2__

The first HAZARDRATIO statement compares the hazards between the standard therapy and the test therapy. Summaries of the posterior distribution of the corresponding hazard ratio are shown in Output 64.13.11. There is a 95% chance that the hazard ratio of standard therapy versus test therapy lies between 0.5 and 1.1.

Output 64.13.11 Hazard Ratio for Treatment
Hazard Ratio Statement 1: Hazard Ratios for Therapy
Description N Mean Standard
Deviation
Quantiles  
25% 50% 75% 95% Equal-Tail Interval 95% HPD Interval
Therapy standard vs test 10000 0.7645 0.1573 0.6544 0.7488 0.8583 0.5001 1.1143 0.4788 1.0805

The second HAZARDRATIO statement assesses the change of hazards for an increase in Age of 10 years. Summaries of the posterior distribution of the corresponding hazard ratio are shown in Output 64.13.12.

Output 64.13.12 Hazard Ratio for Age
Hazard Ratio Statement 2: Hazard Ratios for Age
Description N Mean Standard
Deviation
Quantiles  
25% 50% 75% 95% Equal-Tail Interval 95% HPD Interval
Age Unit=10 10000 0.9230 0.0859 0.8635 0.9195 0.9782 0.7685 1.1011 0.7650 1.0960

The third HAZARDRATIO statement compares the changes of hazards between two types of cells. For four types of cells, there are six different pairs of cell comparisons. The results are shown in Output 64.13.13.

Output 64.13.13 Hazard Ratios for Cell
Hazard Ratio Statement 3: Hazard Ratios for Cell
Description N Mean Standard
Deviation
Quantiles  
25% 50% 75% 95% Equal-Tail Interval 95% HPD Interval
Cell adeno vs large 10000 2.3048 0.7224 1.7929 2.1982 2.7000 1.2067 4.0227 1.0053 3.7057
Cell adeno vs small 10000 1.4377 0.4078 1.1522 1.3841 1.6704 0.7930 2.3999 0.7309 2.2662
Cell adeno vs squamous 10000 3.4449 1.0745 2.6789 3.2941 4.0397 1.8067 5.9727 1.6303 5.5946
Cell large vs small 10000 0.6521 0.1780 0.5264 0.6325 0.7545 0.3618 1.0588 0.3331 1.0041
Cell large vs squamous 10000 1.5579 0.4548 1.2344 1.4955 1.8089 0.8492 2.6346 0.7542 2.4575
Cell small vs squamous 10000 2.4728 0.7081 1.9620 2.3663 2.8684 1.3789 4.1561 1.2787 3.9263

Previous Page | Next Page | Top of Page