The MCMC Procedure |
Standard Distributions |
Table 52.3 through Table 52.30 show all densities that PROC MCMC recognizes. These densities can be used in the MODEL, PRIOR, and HYPERPRIOR statements. See the section Using Density Functions in the Programming Statements for information about how to use distributions in the programming statements. To specify an arbitrary distribution, you can use the functions GENERAL and DGENERAL. See the section Specifying a New Distribution for more details. See the section Truncation and Censoring for tips on how to work with truncated distributions and censoring data.
PROC specification |
beta(, ) |
density |
|
parameter restriction |
, |
range |
|
mean |
|
variance |
|
mode |
|
random number |
if , see (Cheng; 1978); if , see (Atkinson and Whittaker; 1976) and (Atkinson; 1979); if and , see (Cheng; 1978); if or , inversion method; if , uniform random variable |
PROC specification |
binary() |
density |
|
parameter restriction |
|
range |
|
mean |
round |
variance |
|
mode |
|
random number |
generate . If , ; else, |
PROC specification |
binomial(, ) |
density |
|
parameter restriction |
|
range |
|
mean |
|
variance |
|
mode |
|
PROC specification |
cauchy(, ) |
density |
|
parameter restriction |
|
range |
|
mean |
does not exist |
variance |
does not exist |
mode |
|
random number |
generate , let . Repeat the procedure until . is a draw from the standard Cauchy, and (Ripley; 1987) |
PROC specification |
chisq() |
density |
|
parameter restriction |
|
range |
if ; otherwise |
mean |
|
variance |
|
mode |
if ; does not exist otherwise |
random number |
is a special case of the gamma distribution: is a draw from the distribution |
PROC specification |
expchisq() |
density |
|
parameter restriction |
|
range |
|
mode |
|
random number |
generate , and is a draw from the exponential distribution |
relationship to the distribution |
|
PROC specification |
expexpon(scale = ) |
expexpon(iscale = ) |
density |
|
|
parameter restriction |
|
|
range |
|
same |
mode |
|
|
random number |
generate , and is a draw from the exponential exponential distribution. Note that an exponential exponential distribution is not the same as the double exponential distribution. |
|
relationship to the Expon distribution |
|
PROC specification |
expgamma(, scale = ) |
expgamma(, iscale = ) |
density |
|
|
parameter restriction |
|
|
range |
|
same |
mode |
|
|
random number |
generate , and is a draw from the exponential gamma distribution |
|
relationship to the distribution |
|
PROC specification |
expichisq() |
density |
|
parameter restriction |
|
range |
|
mode |
|
random number |
generate , and is a draw from the exponential inverse distribution |
relationship to the distribution |
|
PROC specification |
expigamma(, scale = ) |
expigamma(, iscale = ) |
density |
|
|
parameter restriction |
|
|
range |
|
same |
mode |
|
|
random number |
generate , and is a draw from the exponential inverse-gamma distribution |
|
relationship to the distribution |
|
PROC specification |
expsichisq(, ) |
density |
|
parameter restriction |
|
range |
|
mode |
|
random number |
generate , and is a draw from the exponential scaled inverse distribution |
relationship to the distribution |
|
PROC specification |
expon(scale = ) |
expon(iscale = ) |
density |
|
|
parameter restriction |
|
|
range |
|
same |
mean |
|
|
variance |
|
|
mode |
|
|
random number |
the exponential distribution is a special case of the gamma distribution: is a draw from the exponential distribution |
PROC specification |
gamma(, scale = ) |
gamma(, iscale = ) |
density |
|
|
parameter restriction |
|
|
range |
if otherwise |
same |
mean |
|
|
variance |
|
|
mode |
if |
if |
random number |
see (McGrath and Irving; 1973) |
PROC specification |
geo() |
density 1 |
|
parameter restriction |
|
range |
|
mean |
round() |
variance |
|
mode |
|
random number |
based on samples obtained from a Bernoulli distribution with probability until the first success |
PROC specification |
ichisq() |
density |
|
parameter restriction |
|
range |
|
mean |
if |
variance |
if |
mode |
|
random number |
inverse is a special case of the inverse-gamma distribution: is a draw from the inverse distribution |
PROC specification |
igamma(, scale = ) |
igamma(, iscale = ) |
density |
|
|
parameter restriction |
|
|
range |
|
same |
mean |
if |
if |
variance |
|
|
mode |
|
|
random number |
generate , and is a draw from the distribution |
|
relationship to the gamma distribution |
|
PROC specification |
laplace(, scale = ) |
laplace(, iscale = ) |
density |
|
|
parameter restriction |
|
|
range |
|
same |
mean |
|
|
variance |
|
|
mode |
|
|
random number |
inverse CDF. Generate . If else . is a draw from the Laplace distribution |
PROC specification |
logistic(, ) |
density |
|
parameter restriction |
|
range |
|
mean |
|
variance |
|
mode |
|
random number |
inverse CDF method with . Generate , and is a draw from the logistic distribution |
PROC specification |
lognormal(, sd = ) |
lognormal(, var = ) |
lognormal(, prec = ) |
density |
|
|
|
parameter restriction |
|
|
|
range |
|
same |
same |
mean |
|
|
|
variance |
|
|
|
mode |
|
|
|
random number |
generate , and is a draw from the lognormal distribution |
PROC specification |
negbin(, ) |
density |
|
parameter restriction |
|
range |
|
mean |
round |
variance |
|
mode |
|
random number |
generate , and (Fishman; 1996). |
PROC specification |
normal(, sd = ) |
normal(, var = ) |
normal(, prec = ) |
density |
|
|
|
parameter restriction |
|
|
|
range |
|
same |
same |
mean |
|
same |
same |
variance |
|
|
|
mode |
|
same |
same |
PROC specification |
pareto(, ) |
density |
|
parameter restriction |
|
range |
|
mean |
if |
variance |
if |
mode |
|
random number |
inverse CDF method with . Generate , and is a draw from the Pareto distribution. |
useful transformation |
is Beta(, 1)I{}. |
PROC specification |
poisson() |
density |
|
parameter restriction |
|
range |
|
mean |
|
variance |
, if |
mode |
round |
PROC specification |
sichisq() |
density |
|
parameter restriction |
|
range |
|
mean |
if |
variance |
if |
mode |
|
random number |
scaled inverse is a special case of the inverse-gamma distribution: is a draw from the scaled inverse distribution. |
PROC specification |
t(, sd = , ) |
t(, var = , ) |
t(, prec = , ) |
density |
|
|
|
parm restriction |
, |
, |
, |
range |
|
same |
same |
mean |
if |
same |
same |
variance |
if |
if |
if |
mode |
|
same |
same |
random number |
is a draw from the t-distribution. |
PROC specification |
uniform(, ) |
density |
|
parameter restriction |
none |
range |
|
mean |
|
variance |
|
mode |
does not exist |
random number |
Mersenne Twister (Matsumoto and Kurita; 1992, 1994; Matsumoto and Nishimura; 1998) |
PROC specification |
wald(, ) |
density |
|
parameter restriction |
|
range |
|
mean |
|
variance |
|
mode |
|
random number |
generate . Let and . Perform a Bernoulli trial, . If , choose ; otherwise, choose (Michael, Schucany, and Haas; 1976). |
PROC specification |
weibull(, , ) |
density |
|
parameter restriction |
|
range |
if otherwise |
mean |
|
variance |
|
mode |
if |
random number |
inverse CDF method with . Generate , and is a draw from the Weibull distribution. |
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.