The KRIGE2D Procedure |
In the section Theoretical Semivariogram Model Fitting in the VARIOGRAM procedure, a particular theoretical semivariogram is chosen for the coal seam thickness data. The chosen semivariogram is Gaussian with a scale (sill) of , and a range of . This choice of the semivariogram is based on an automated fit by using PROC NLIN.
Another possible choice of model is the spherical semivariogram with the same scale (sill) of but with a range of . This choice of range comes from a visual fit, which is based on a comparison of the plots of the regular and robust sample semivariograms and the spherical semivariogram for various scale (sill) and range values. While not as good as the Gaussian model, the fit is reasonable.
It is generally held that spatial prediction is robust against model specification, while the standard error computation is not so robust.
This example investigates the effect of using these different models on the prediction and associated standard errors. First, you use a DATA step to input the thickness data as in the following:
data thick; input East North Thick @@; label Thick='Coal Seam Thickness'; datalines; 0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5 4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9 6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4 13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8 17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8 23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3 24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8 27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7 29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8 32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8 37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5 39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1 46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7 51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2 55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1 62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1 70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8 78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8 80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6 84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8 86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6 88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5 88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9 91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7 55.8 50.5 38.1 96.2 84.3 40.3 98.2 58.2 39.5 ;
You run the KRIGE2D procedure on the original Gaussian model, as the following statements show:
proc krige2d data=thick outest=pred1 noprint; coordinates xc=East yc=North; predict var=Thick r=60; model scale=7.2881 range=30.6239 form=gauss; grid x=0 to 100 by 10 y=0 to 100 by 10; run;
Then, you run the KRIGE2D procedure by using a spherical model with a modified range, using the following statements:
proc krige2d data=thick outest=pred2 noprint; coordinates xc=East yc=North; predict var=Thick r=60; model scale=7.5 range=60 form=spherical; grid x=0 to 100 by 10 y=0 to 100 by 10; run;
Eventually, you perform the comparison and obtain the comparison results by using the COMPARE and the PRINT procedures as the following statements show:
data compare; merge pred1(rename=(estimate=g_prd stderr=g_std)) pred2(rename=(estimate=s_prd stderr=s_std)); prd_dif=g_prd-s_prd; std_dif=g_std-s_std; run; proc print data=compare; title 'Comparison of Gaussian and Spherical Models'; title2 'Differences of Predictions and Standard Errors'; var gxc gyc npoints g_prd s_prd prd_dif g_std s_std std_dif; run;
The predicted values at each of the grid locations do not differ greatly for the two semivariogram models. However, the standard error of prediction for the spherical model is substantially larger than for the Gaussian model. A partial outcome from the first 50 prediction grid points of the comparison analysis is shown in Output 46.1.1.
Comparison of Gaussian and Spherical Models |
Differences of Predictions and Standard Errors: First 50 Observations |
Obs | GXC | GYC | NPOINTS | g_prd | s_prd | prd_dif | g_std | s_std | std_dif |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 23 | 43.9702 | 42.6700 | 1.30018 | 0.63046 | 2.05947 | -1.42901 |
2 | 0 | 10 | 28 | 41.7145 | 41.6780 | 0.03657 | 0.50937 | 2.03464 | -1.52526 |
3 | 0 | 20 | 31 | 38.9756 | 39.7285 | -0.75291 | 0.27275 | 1.93478 | -1.66203 |
4 | 0 | 30 | 33 | 36.1591 | 37.2816 | -1.12253 | 0.11363 | 1.54521 | -1.43157 |
5 | 0 | 40 | 40 | 33.8340 | 35.4018 | -1.56771 | 0.04291 | 1.37653 | -1.33361 |
6 | 0 | 50 | 39 | 32.8464 | 34.3835 | -1.53711 | 0.02561 | 1.22559 | -1.19997 |
7 | 0 | 60 | 36 | 33.9556 | 34.3140 | -0.35842 | 0.00168 | 0.54120 | -0.53952 |
8 | 0 | 70 | 31 | 36.9217 | 37.6517 | -0.73009 | 0.03428 | 1.20363 | -1.16935 |
9 | 0 | 80 | 31 | 41.1035 | 41.1016 | 0.00192 | 0.04180 | 0.99544 | -0.95364 |
10 | 0 | 90 | 28 | 43.6723 | 42.5216 | 1.15068 | 0.09125 | 1.57357 | -1.48232 |
11 | 0 | 100 | 23 | 41.8818 | 42.6511 | -0.76939 | 0.48854 | 2.20792 | -1.71938 |
12 | 10 | 0 | 25 | 44.6825 | 44.1959 | 0.48655 | 0.07061 | 1.09743 | -1.02683 |
13 | 10 | 10 | 31 | 42.8441 | 42.7496 | 0.09449 | 0.09701 | 1.46686 | -1.36984 |
14 | 10 | 20 | 35 | 40.3026 | 40.3557 | -0.05301 | 0.04555 | 1.54876 | -1.50321 |
15 | 10 | 30 | 40 | 37.7583 | 37.7659 | -0.00754 | 0.00766 | 0.94135 | -0.93369 |
16 | 10 | 40 | 45 | 35.6487 | 35.5495 | 0.09918 | 0.00497 | 0.75917 | -0.75420 |
17 | 10 | 50 | 45 | 35.0798 | 34.7083 | 0.37154 | 0.01284 | 1.05027 | -1.03743 |
18 | 10 | 60 | 42 | 36.0688 | 35.4784 | 0.59034 | 0.01123 | 1.18270 | -1.17147 |
19 | 10 | 70 | 37 | 38.1205 | 38.1052 | 0.01527 | 0.00272 | 0.89156 | -0.88884 |
20 | 10 | 80 | 34 | 41.2811 | 41.0803 | 0.20080 | 0.02097 | 1.22754 | -1.20657 |
21 | 10 | 90 | 30 | 43.2213 | 42.8904 | 0.33089 | 0.05290 | 1.49438 | -1.44148 |
22 | 10 | 100 | 26 | 40.9801 | 43.1350 | -2.15488 | 0.17057 | 1.93434 | -1.76377 |
23 | 20 | 0 | 29 | 44.4724 | 44.4359 | 0.03655 | 0.05490 | 1.23618 | -1.18128 |
24 | 20 | 10 | 36 | 43.3401 | 43.2958 | 0.04428 | 0.00417 | 0.95510 | -0.95092 |
25 | 20 | 20 | 40 | 41.1299 | 40.9923 | 0.13757 | 0.00547 | 1.18538 | -1.17991 |
26 | 20 | 30 | 44 | 38.6046 | 38.5335 | 0.07118 | 0.00765 | 1.08968 | -1.08203 |
27 | 20 | 40 | 50 | 36.5357 | 36.5331 | 0.00258 | 0.02509 | 1.33589 | -1.31080 |
28 | 20 | 50 | 50 | 36.1273 | 35.8019 | 0.32543 | 0.02075 | 1.31950 | -1.29875 |
29 | 20 | 60 | 50 | 36.8110 | 36.5435 | 0.26748 | 0.00684 | 1.11476 | -1.10791 |
30 | 20 | 70 | 40 | 38.4321 | 38.5186 | -0.08647 | 0.00217 | 0.89419 | -0.89202 |
31 | 20 | 80 | 37 | 41.0639 | 41.0482 | 0.01561 | 0.00645 | 1.18542 | -1.17898 |
32 | 20 | 90 | 34 | 43.1765 | 43.1070 | 0.06948 | 0.00524 | 0.94924 | -0.94400 |
33 | 20 | 100 | 27 | 42.7637 | 43.4689 | -0.70513 | 0.06070 | 1.52094 | -1.46024 |
34 | 30 | 0 | 36 | 43.4020 | 43.9436 | -0.54159 | 0.03891 | 1.32240 | -1.28348 |
35 | 30 | 10 | 40 | 43.1542 | 43.1454 | 0.00879 | 0.00175 | 0.72412 | -0.72237 |
36 | 30 | 20 | 45 | 41.2410 | 41.2158 | 0.02520 | 0.00397 | 1.10233 | -1.09836 |
37 | 30 | 30 | 53 | 38.9347 | 39.0203 | -0.08556 | 0.00391 | 1.04491 | -1.04100 |
38 | 30 | 40 | 58 | 37.2798 | 37.3441 | -0.06425 | 0.00654 | 0.89225 | -0.88571 |
39 | 30 | 50 | 58 | 36.7224 | 36.7485 | -0.02611 | 0.00534 | 0.83405 | -0.82871 |
40 | 30 | 60 | 56 | 37.2079 | 37.3339 | -0.12594 | 0.00561 | 1.00195 | -0.99634 |
41 | 30 | 70 | 49 | 38.8800 | 38.8913 | -0.01132 | 0.00225 | 1.01429 | -1.01204 |
42 | 30 | 80 | 44 | 41.0573 | 41.0664 | -0.00910 | 0.00192 | 0.97336 | -0.97145 |
43 | 30 | 90 | 37 | 43.0975 | 43.0463 | 0.05114 | 0.00168 | 0.51312 | -0.51144 |
44 | 30 | 100 | 30 | 44.6255 | 43.3247 | 1.30077 | 0.12062 | 1.57134 | -1.45072 |
45 | 40 | 0 | 37 | 42.8223 | 43.5137 | -0.69134 | 0.01588 | 1.25685 | -1.24097 |
46 | 40 | 10 | 41 | 42.8953 | 42.9167 | -0.02144 | 0.00247 | 0.95163 | -0.94916 |
47 | 40 | 20 | 53 | 41.1033 | 41.1816 | -0.07829 | 0.00154 | 0.96204 | -0.96049 |
48 | 40 | 30 | 61 | 39.3295 | 39.2949 | 0.03453 | 0.00366 | 1.05527 | -1.05161 |
49 | 40 | 40 | 68 | 38.1841 | 37.9297 | 0.25443 | 0.01252 | 1.27124 | -1.25872 |
50 | 40 | 50 | 68 | 37.3330 | 37.4359 | -0.10284 | 0.02764 | 1.44559 | -1.41796 |
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.