Previous Page | Next Page

The CLUSTER Procedure

Example 29.3 Cluster Analysis of Fisher’s Iris Data

The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters on 50 iris specimens from each of three species, Iris setosa, I. versicolor, and I. virginica. Mezzich and Solomon (1980) discuss a variety of cluster analyses of the iris data.

The following code analyzes the iris data by using Ward’s method and two-stage density linkage and then illustrates how the FASTCLUS procedure can be used in combination with PROC CLUSTER to analyze large data sets.

      title 'Cluster Analysis of Fisher (1936) Iris Data';
      proc format;
         value specname
            1='Setosa    '
            2='Versicolor'
            3='Virginica ';
      run;
   
   data iris;
      input SepalLength SepalWidth PetalLength PetalWidth Species @@;
      format Species specname.;
      label SepalLength='Sepal Length in mm.'
            SepalWidth ='Sepal Width in mm.'
            PetalLength='Petal Length in mm.'
            PetalWidth ='Petal Width in mm.';
      symbol = put(species, specname10.);
      datalines;
   50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3
   63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
   59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
   65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
   68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
   77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
   49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
   64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
   55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
   49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
   67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
   77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
   50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
   61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
   61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
   51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
   51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
   46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
   50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
   57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
   71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
   49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
   49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
   66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
   44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
   47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
   74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
   56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
   49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
   56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
   51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
   54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
   61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
   68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
   45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
   55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
   51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
   63 33 60 25 3 53 37 15 02 1
   ;

The following macro, SHOW, is used in the subsequent analyses to display cluster results. It invokes the FREQ procedure to crosstabulate clusters and species. The CANDISC procedure computes canonical variables for discriminating among the clusters, and the first two canonical variables are plotted to show cluster membership. See Chapter 27, The CANDISC Procedure, for a canonical discriminant analysis of the iris species.

   /*--- Define macro show ---*/
   %macro show;
      proc freq;
         tables cluster*species / nopercent norow nocol plot=none;
      run;
      proc candisc noprint out=can;
         class cluster;
         var petal: sepal:;
      run;
      proc sgplot data=can ;
         scatter y=can2 x=can1 / group=cluster ;
      run;
   %mend;

The first analysis clusters the iris data by using Ward’s method (see Output 29.3.1) and plots the CCC and pseudo and statistics (see Output 29.3.2). The CCC has a local peak at 3 clusters but a higher peak at 5 clusters. The pseudo statistic indicates 3 clusters, while the pseudo statistic suggests 3 or 6 clusters.

The TREE procedure creates an output data set containing the 3-cluster partition for use by the SHOW macro. The FREQ procedure reveals 16 misclassifications. The results are shown in Output 29.3.3.


   title2 'By Ward''s Method';
   ods graphics on ;   
   proc cluster data=iris method=ward print=15 ccc pseudo;
      var petal: sepal:;
      copy species;
   run;
   
   proc tree noprint ncl=3 out=out;
      copy petal: sepal: species;
   run;
   
   %show;

Output 29.3.1 Cluster Analysis of Fisher’s Iris Data: PROC CLUSTER with METHOD=WARD
Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix
  Eigenvalue Difference Proportion Cumulative
1 422.824171 398.557096 0.9246 0.9246
2 24.267075 16.446125 0.0531 0.9777
3 7.820950 5.437441 0.0171 0.9948
4 2.383509   0.0052 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Root-Mean-Square Distance Between Observations 30.24221

Cluster History
NCL Clusters Joined FREQ SPRSQ RSQ ERSQ CCC PSF PST2 T
i
e
15 CL24 CL28 15 0.0016 .971 .958 5.93 324 9.8  
14 CL21 CL53 7 0.0019 .969 .955 5.85 329 5.1  
13 CL18 CL48 15 0.0023 .967 .953 5.69 334 8.9  
12 CL16 CL23 24 0.0023 .965 .950 4.63 342 9.6  
11 CL14 CL43 12 0.0025 .962 .946 4.67 353 5.8  
10 CL26 CL20 22 0.0027 .959 .942 4.81 368 12.9  
9 CL27 CL17 31 0.0031 .956 .936 5.02 387 17.8  
8 CL35 CL15 23 0.0031 .953 .930 5.44 414 13.8  
7 CL10 CL47 26 0.0058 .947 .921 5.43 430 19.1  
6 CL8 CL13 38 0.0060 .941 .911 5.81 463 16.3  
5 CL9 CL19 50 0.0105 .931 .895 5.82 488 43.2  
4 CL12 CL11 36 0.0172 .914 .872 3.99 515 41.0  
3 CL6 CL7 64 0.0301 .884 .827 4.33 558 57.2  
2 CL4 CL3 100 0.1110 .773 .697 3.83 503 116  
1 CL5 CL2 150 0.7726 .000 .000 0.00 . 503  

Output 29.3.2 Criteria for the Number of Clusters with METHOD=WARD
Criteria for the Number of Clusters with METHOD=WARD

Output 29.3.3 Crosstabulation of Clusters for METHOD=WARD
Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The FREQ Procedure

Frequency
Table of CLUSTER by Species
CLUSTER Species
Setosa Versicolor Virginica Total
1
0
49
15
64
2
0
1
35
36
3
50
0
0
50
Total
50
50
50
150

Output 29.3.4 Scatter Plot of Clusters for METHOD=WARD
Scatter Plot of Clusters for METHOD=WARD

The second analysis uses two-stage density linkage. The raw data suggest 2 or 6 modes instead of 3:

 

modes

3

 

12

4-6

 

6

7

 

4

8

 

3

9-50

 

2

51+

 

1

The following analysis uses K=8 to produce 3 clusters for comparison with other analyses. There are only 6 misclassifications. The results are shown in Output 29.3.5 and Output 29.3.6.

   title2 'By Two-Stage Density Linkage';
   ods graphics on ;   
   proc cluster data=iris method=twostage k=8 print=15 ccc pseudo;
      var petal: sepal:;
      copy species;
   run;
   
   proc tree noprint ncl=3 out=out;
      copy petal: sepal: species;
   run;
   
   %show;
   

Output 29.3.5 Cluster Analysis of Fisher’s Iris Data: PROC CLUSTER with METHOD=TWOSTAGE
Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix
  Eigenvalue Difference Proportion Cumulative
1 422.824171 398.557096 0.9246 0.9246
2 24.267075 16.446125 0.0531 0.9777
3 7.820950 5.437441 0.0171 0.9948
4 2.383509   0.0052 1.0000


K = 8

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Cluster History
NCL   FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Normalized
Fusion Density
Maximum Density
in Each Cluster
T
i
e
Clusters Joined Lesser Greater
15 CL17 OB127 43 0.0024 .917 .958 -11 107 3.4 0.3903 0.2066 3.5156  
14 CL16 OB137 50 0.0023 .915 .955 -10 113 5.6 0.3637 0.1837 100.0  
13 CL15 OB74 44 0.0029 .912 .953 -9.8 119 3.8 0.3553 0.2130 3.5156  
12 CL22 OB49 47 0.0036 .909 .950 -7.7 125 5.2 0.3223 0.1736 8.3678 T
11 CL12 OB85 48 0.0036 .905 .946 -7.4 132 4.8 0.3223 0.1736 8.3678  
10 CL11 OB98 49 0.0033 .902 .942 -6.8 143 4.1 0.2879 0.1479 8.3678  
9 CL13 OB24 45 0.0036 .898 .936 -6.2 155 4.5 0.2802 0.2005 3.5156  
8 CL10 OB25 50 0.0019 .896 .930 -5.2 175 2.2 0.2699 0.1372 8.3678  
7 CL8 OB121 51 0.0035 .893 .921 -4.2 198 4.0 0.2586 0.1372 8.3678  
6 CL9 OB45 46 0.0041 .888 .911 -3.0 229 4.7 0.1412 0.0832 3.5156  
5 CL6 OB39 47 0.0048 .884 .895 -1.5 276 5.1 0.107 0.0605 3.5156  
4 CL5 OB21 48 0.0048 .879 .872 0.54 353 4.7 0.0969 0.0541 3.5156  
3 CL4 OB90 49 0.0046 .874 .827 3.49 511 4.2 0.0715 0.0370 3.5156  
2 CL7 CL3 100 0.1017 .773 .697 3.83 503 96.3 2.6277 3.5156 8.3678  


3 modal clusters have been formed.

Output 29.3.6 Criteria for the Number of Clusters with METHOD=TWOSTAGE
Criteria for the Number of Clusters with METHOD=TWOSTAGE

Output 29.3.7 Crosstabulation of Clusters for METHOD=TWOSTAGE
Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The FREQ Procedure

Frequency
Table of CLUSTER by Species
CLUSTER Species
Setosa Versicolor Virginica Total
1
50
0
0
50
2
0
48
3
51
3
0
2
47
49
Total
50
50
50
150

Output 29.3.8 Scatter Plot of Clusters for METHOD=TWOSTAGE
Scatter Plot of Clusters for METHOD=TWOSTAGE

The CLUSTER procedure is not practical for very large data sets because, with most methods, the CPU time is roughly proportional to the square or cube of the number of observations. The FASTCLUS procedure requires time proportional to the number of observations and can therefore be used with much larger data sets than PROC CLUSTER. If you want to hierarchically cluster a very large data set, you can use PROC FASTCLUS for a preliminary cluster analysis to produce a large number of clusters and then use PROC CLUSTER to hierarchically cluster the preliminary clusters.

FASTCLUS automatically creates the variables _FREQ_ and _RMSSTD_ in the MEAN= output data set. These variables are then automatically used by PROC CLUSTER in the computation of various statistics.

The following SAS code uses the iris data to illustrate the process of clustering clusters. In the preliminary analysis, PROC FASTCLUS produces 10 clusters, which are then crosstabulated with species. The data set containing the preliminary clusters is sorted in preparation for later merges. The results are shown in Output 29.3.9 and Output 29.3.10.

   title2 'Preliminary Analysis by FASTCLUS';
   proc fastclus data=iris summary maxc=10 maxiter=99 converge=0
                 mean=mean out=prelim cluster=preclus;
      var petal: sepal:;
   run;
   proc freq;
      tables preclus*species / nopercent norow nocol plot=none;
   run;
   proc sort data=prelim;
      by preclus;
   run;

Output 29.3.9 Preliminary Analysis of Fisher’s Iris Data: Fastclus Procedure
Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=10 Maxiter=99 Converge=0

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 2.1389

Cluster Summary
Cluster Frequency RMS Std Deviation Maximum Distance
from Seed
to Observation
Radius
Exceeded
Nearest Cluster Distance Between
Cluster Centroids
1 9 2.7067 8.2027   5 8.7362
2 19 2.2001 7.7340   4 6.2243
3 18 2.1496 6.2173   8 7.5049
4 4 2.5249 5.3268   2 6.2243
5 3 2.7234 5.8214   1 8.7362
6 7 2.2939 5.1508   2 9.3318
7 17 2.0274 6.9576   10 7.9503
8 18 2.2628 7.1135   3 7.5049
9 22 2.2666 7.5029   8 9.0090
10 33 2.0594 10.0033   7 7.9503

Pseudo F Statistic = 370.58

Observed Over-All R-Squared = 0.95971

Approximate Expected Over-All R-Squared = 0.82928

Cubic Clustering Criterion = 27.077


WARNING: The two values above are invalid for correlated variables.

Output 29.3.10 Crosstabulation of Species and Cluster From the Fastclus Procedure
Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FREQ Procedure

Frequency
Table of preclus by Species
preclus(Cluster) Species
Setosa Versicolor Virginica Total
1
0
0
9
9
2
0
19
0
19
3
0
18
0
18
4
0
3
1
4
5
0
0
3
3
6
0
7
0
7
7
17
0
0
17
8
0
3
15
18
9
0
0
22
22
10
33
0
0
33
Total
50
50
50
150

The following macro, CLUS, clusters the preliminary clusters. There is one argument to choose the METHOD= specification to be used by PROC CLUSTER. The TREE procedure creates an output data set containing the 3-cluster partition, which is sorted and merged with the OUT= data set from PROC FASTCLUS to determine which cluster each of the original 150 observations belongs to. The SHOW macro is then used to display the results. In this example, the CLUS macro is invoked using Ward’s method, which produces 16 misclassifications, and Wong’s hybrid method, which produces 22 misclassifications.


   /*--- Define macro clus ---*/
   %macro clus(method);
      proc cluster data=mean method=&method ccc pseudo;
         var petal: sepal:;
         copy preclus;
      run;
      proc tree noprint ncl=3 out=out;
         copy petal: sepal: preclus;
      run;
      proc sort data=out;
         by preclus;
      run;
      data clus;
         merge out prelim;
         by preclus;
      run;
      %show;
   %mend;

The following statements produce Output 29.3.11 through Output 29.3.14.

   title2 'Clustering Clusters by Ward''s Method';
   %clus(ward);

Output 29.3.11 Clustering Clusters by Ward’s Method
Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix
  Eigenvalue Difference Proportion Cumulative
1 416.976349 398.666421 0.9501 0.9501
2 18.309928 14.952922 0.0417 0.9918
3 3.357006 3.126943 0.0076 0.9995
4 0.230063   0.0005 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Root-Mean-Square Distance Between Observations 30.24221

Cluster History
NCL Clusters Joined FREQ SPRSQ RSQ ERSQ CCC PSF PST2 T
i
e
9 OB2 OB4 23 0.0019 .958 .932 6.26 400 6.3  
8 OB1 OB5 12 0.0025 .955 .926 6.75 434 5.8  
7 CL9 OB6 30 0.0069 .948 .918 6.28 438 19.5  
6 OB3 OB8 36 0.0074 .941 .907 6.21 459 26.0  
5 OB7 OB10 50 0.0104 .931 .892 6.15 485 42.2  
4 CL8 OB9 34 0.0162 .914 .870 4.28 519 39.3  
3 CL7 CL6 66 0.0318 .883 .824 4.39 552 59.7  
2 CL4 CL3 100 0.1099 .773 .695 3.94 503 113  
1 CL2 CL5 150 0.7726 .000 .000 0.00 . 503  

Output 29.3.12 Criteria for the Number of Clusters for Clustering Clusters from Ward’s Method
Criteria for the Number of Clusters for Clustering Clusters from Ward’s Method

Output 29.3.13 Crosstabulation for Clustering Clusters from Ward’s Method
Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The FREQ Procedure

Frequency
Table of CLUSTER by Species
CLUSTER Species
Setosa Versicolor Virginica Total
1
0
50
16
66
2
0
0
34
34
3
50
0
0
50
Total
50
50
50
150

Output 29.3.14 Scatter Plot for Clustering Clusters using Ward’s Method
Scatter Plot for Clustering Clusters using Ward’s Method


The following statements produce Output 29.3.15 through Output 29.3.17.

   title2 "Clustering Clusters by Wong's Hybrid Method";
   %clus(twostage hybrid);

Output 29.3.15 Clustering Clusters by Wong’s Hybrid Method
Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix
  Eigenvalue Difference Proportion Cumulative
1 416.976349 398.666421 0.9501 0.9501
2 18.309928 14.952922 0.0417 0.9918
3 3.357006 3.126943 0.0076 0.9995
4 0.230063   0.0005 1.0000


 

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Cluster History
NCL   FREQ SPRSQ RSQ ERSQ CCC PSF PST2 Normalized
Fusion Density
Maximum Density
in Each Cluster
T
i
e
Clusters Joined Lesser Greater
9 OB10 OB7 50 0.0104 .949 .932 3.81 330 42.2 40.24 58.2179 100.0  
8 OB3 OB8 36 0.0074 .942 .926 3.22 329 26.0 27.981 39.4511 48.4350  
7 OB2 OB4 23 0.0019 .940 .918 4.24 373 6.3 23.775 8.9675 46.3026  
6 CL8 OB9 58 0.0194 .921 .907 2.13 334 46.3 20.724 46.8846 48.4350  
5 CL7 OB6 30 0.0069 .914 .892 3.09 383 19.5 13.303 17.6360 46.3026  
4 CL6 OB1 67 0.0292 .884 .870 1.21 372 41.0 8.4137 10.8758 48.4350  
3 CL4 OB5 70 0.0138 .871 .824 3.33 494 12.3 5.1855 6.2890 48.4350  
2 CL3 CL5 100 0.0979 .773 .695 3.94 503 89.5 19.513 46.3026 48.4350  
1 CL2 CL9 150 0.7726 .000 .000 0.00 . 503 1.3337 48.4350 100.0  


3 modal clusters have been formed.

Output 29.3.16 Crosstabulation for Clustering Clusters from Wong’s Hybrid Method
Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The FREQ Procedure

Frequency
Table of CLUSTER by Species
CLUSTER Species
Setosa Versicolor Virginica Total
1
50
0
0
50
2
0
21
49
70
3
0
29
1
30
Total
50
50
50
150

Output 29.3.17 Scatter Plot for Clustering Clusters using Wong’s Hybrid Method
Scatter Plot for Clustering Clusters using Wong’s Hybrid Method

Previous Page | Next Page | Top of Page