The HPGENSELECT Procedure

References

  • Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control AC-19:716–723.

  • Burnham, K. P., and Anderson, D. R. (1998). Model Selection and Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag.

  • Cox, D. R., and Snell, E. J. (1989). The Analysis of Binary Data. 2nd ed. London: Chapman & Hall.

  • Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). “An Adaptive Nonlinear Least-Squares Algorithm.” ACM Transactions on Mathematical Software 7:348–368.

  • Dennis, J. E., and Mei, H. H. W. (1979). “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values.” Journal of Optimization Theory and Applications 28:453–482.

  • Dunn, P. K., and Smyth, G. K. (2005). “Series Evaluation of Tweedie Exponential Dispersion Model Densities.” Statistics and Computing 15:267–280.

  • Dunn, P. K., and Smyth, G. K. (2008). “Series Evaluation of Tweedie Exponential Dispersion Model Densities by Fourier Inversion.” Statistics and Computing 18:73–86.

  • Efron, B., Hastie, T. J., Johnstone, I. M., and Tibshirani, R. (2004). “Least Angle Regression (with Discussion).” Annals of Statistics 32:407–499.

  • Eskow, E., and Schnabel, R. B. (1991). “Algorithm 695: Software for a New Modified Cholesky Factorization.” ACM Transactions on Mathematical Software 17:306–312.

  • Fletcher, R. (1987). Practical Methods of Optimization. 2nd ed. Chichester, UK: John Wiley & Sons.

  • Frees, E. W. (2010). Regression Modeling with Actuarial and Financial Applications. Cambridge: Cambridge University Press.

  • Gay, D. M. (1983). “Subroutines for Unconstrained Minimization.” ACM Transactions on Mathematical Software 9:503–524.

  • Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer-Verlag.

  • Hurvich, C. M., and Tsai, C.-L. (1989). “Regression and Time Series Model Selection in Small Samples.” Biometrika 76:297–307.

  • McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.

  • Moré, J. J., and Sorensen, D. C. (1983). “Computing a Trust-Region Step.” SIAM Journal on Scientific and Statistical Computing 4:553–572.

  • Nesterov, Y. (2013). “Gradient Methods for Minimizing Composite Objective Function.” Mathematical Programming 140:125–161.

  • Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.

  • Yuan, M., and Lin, L. (2006). “Model Selection and Estimation in Regression with Grouped Variables.” Journal of the Royal Statistical Society, Series B 68:49–67.