The HPLOGISTIC Procedure

References

  • Akaike, H. (1974), “A New Look at the Statistical Model Identification,” IEEE Transactions on Automatic Control, AC-19, 716–723.

  • Albert, A. and Anderson, J. A. (1984), “On the Existence of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika, 71, 1–10.

  • Brier, G. W. (1950), “Verification of Forecasts Expressed in Terms of Probability,” Monthly Weather Review, 78, 1–3.

  • Burnham, K. P. and Anderson, D. R. (1998), Model Selection and Inference: A Practical Information-Theoretic Approach, New York: Springer-Verlag.

  • Cox, D. R. and Snell, E. J. (1989), The Analysis of Binary Data, 2nd Edition, London: Chapman & Hall.

  • Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.

  • Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values,” Journal of Optimization Theory and Applications, 28, 453–482.

  • Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified Cholesky Factorization,” ACM Transactions on Mathematical Software, 17, 306–312.

  • Fleiss, J. L. (1981), Statistical Methods for Rates and Proportions, 2nd Edition, New York: John Wiley & Sons.

  • Fletcher, R. (1987), Practical Methods of Optimization, 2nd Edition, Chichester, UK: John Wiley & Sons.

  • Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM Transactions on Mathematical Software, 9, 503–524.

  • Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001), The Elements of Statistical Learning, New York: Springer-Verlag.

  • Hosmer, D. W., Jr. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd Edition, New York: John Wiley & Sons.

  • Hurvich, C. M. and Tsai, C.-L. (1989), “Regression and Time Series Model Selection in Small Samples,” Biometrika, 76, 297–307.

  • Lawless, J. F. and Singhal, K. (1978), “Efficient Screening of Nonnormal Regression Models,” Biometrics, 34, 318–327.

  • Magee, L. (1990), “$R^2$ Measures Based on Wald and Likelihood Ratio Joint Significant Tests,” American Statistician, 44, 250–253.

  • McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd Edition, London: Chapman & Hall.

  • McFadden, D. (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. Zarembka, ed., Frontiers in Econometrics, New York: Academic Press.

  • McNicol, D. (2005), A Primer of Signal Detection Theory, Mahwah, NJ: Lawrence Erlbaum Associates.

  • Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM Journal on Scientific and Statistical Computing, 4, 553–572.

  • Murphy, A. H. (1973), “A New Vector Partition of the Probability Score,” Journal of Applied Meterology, 12, 595–600.

  • Nagelkerke, N. J. D. (1991), “A Note on a General Definition of the Coefficient of Determination,” Biometrika, 78, 691–692.

  • Pepe, M. S. (2003), The Statistical Evaluation of Medical Tests for Classification and Prediction, New York: Oxford University Press.

  • Santner, T. J. and Duffy, D. E. (1986), “A Note on A. Albert and J. A. Anderson’s Conditions for the Existence of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika, 73, 755–758.

  • Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.

  • Tjur, T. (2009), “Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination,” American Statistician, 63, 366–372.