Previous Page | Next Page

The SHEWHART Procedure

Diagnosing and Modeling Autocorrelation

You can diagnose autocorrelation with an autocorrelation plot created with the ARIMA procedure.

title ;
proc arima data=Chemical;
   identify var = xt;
run;

Refer to SAS/ETS 9.22 User's Guide for details on the ARIMA procedure. The plot, shown in Figure 13.43.75, indicates that the data are highly autocorrelated with a lag 1 autocorrelation of 0.83.

Output 13.43.75 Autocorrelation Plots for Chemical Data
The ARIMA Procedure

Autocorrelations
Lag Covariance Correlation Std Error
0 48.348400 1.00000 0
1 40.141884 0.83026 0.100000
2 34.732168 0.71837 0.154229
3 29.950852 0.61948 0.184683
4 24.739536 0.51169 0.204409
5 20.594420 0.42596 0.216840
6 18.427704 0.38114 0.225052
7 17.400188 0.35989 0.231417
8 17.621272 0.36446 0.236948
9 18.363756 0.37982 0.242489
10 16.754040 0.34653 0.248367
11 16.844924 0.34841 0.253156
12 17.137208 0.35445 0.257906
13 16.884092 0.34922 0.262732
14 17.927976 0.37081 0.267334
15 16.801860 0.34752 0.272429
16 17.076544 0.35320 0.276826
17 17.815028 0.36847 0.281296
18 16.501312 0.34130 0.286082
19 14.662196 0.30326 0.290126
20 12.612280 0.26086 0.293278
21 11.105364 0.22969 0.295590
22 8.891648 0.18391 0.297369
23 6.794132 0.14052 0.298504
24 4.732816 0.09789 0.299165

"." marks two standard errors


Partial Autocorrelations
Lag Correlation
1 0.83026
2 0.09346
3 0.00385
4 -0.07340
5 -0.00278
6 0.09013
7 0.08781
8 0.10327
9 0.07240
10 -0.11637
11 0.08210
12 0.07580
13 0.04429
14 0.11661
15 -0.10446
16 0.07703
17 0.07376
18 -0.07080
19 -0.02814
20 -0.08559
21 0.01962
22 -0.04599
23 -0.07878
24 -0.02303

The partial autocorrelation plot in Figure 13.43.75 suggests that the data can be modeled with a first-order autoregressive model, commonly referred to as an AR(1) model.

     

You can fit this model with the ARIMA procedure. The results in Figure 13.43.76 show that the equation of the fitted model is .

proc arima data=Chemical;
   identify var=xt;
   estimate p=1 method=ml;
run;

Output 13.43.76 Fitted AR(1) Model
The ARIMA Procedure

Maximum Likelihood Estimation
Parameter Estimate Standard Error t Value Approx
Pr > |t|
Lag
MU 85.28375 2.32973 36.61 <.0001 0
AR1,1 0.84694 0.05221 16.22 <.0001 1

Constant Estimate 13.05329
Variance Estimate 14.27676
Std Error Estimate 3.77846
AIC 552.8942
SBC 558.1045
Number of Residuals 100

Previous Page | Next Page | Top of Page