The SHEWHART Procedure |
You can diagnose autocorrelation with an autocorrelation plot created with the ARIMA procedure.
title ; proc arima data=Chemical; identify var = xt; run;
Refer to SAS/ETS 9.22 User's Guide for details on the ARIMA procedure. The plot, shown in Figure 13.43.75, indicates that the data are highly autocorrelated with a lag 1 autocorrelation of 0.83.
Autocorrelations | |||
---|---|---|---|
Lag | Covariance | Correlation | Std Error |
0 | 48.348400 | 1.00000 | 0 |
1 | 40.141884 | 0.83026 | 0.100000 |
2 | 34.732168 | 0.71837 | 0.154229 |
3 | 29.950852 | 0.61948 | 0.184683 |
4 | 24.739536 | 0.51169 | 0.204409 |
5 | 20.594420 | 0.42596 | 0.216840 |
6 | 18.427704 | 0.38114 | 0.225052 |
7 | 17.400188 | 0.35989 | 0.231417 |
8 | 17.621272 | 0.36446 | 0.236948 |
9 | 18.363756 | 0.37982 | 0.242489 |
10 | 16.754040 | 0.34653 | 0.248367 |
11 | 16.844924 | 0.34841 | 0.253156 |
12 | 17.137208 | 0.35445 | 0.257906 |
13 | 16.884092 | 0.34922 | 0.262732 |
14 | 17.927976 | 0.37081 | 0.267334 |
15 | 16.801860 | 0.34752 | 0.272429 |
16 | 17.076544 | 0.35320 | 0.276826 |
17 | 17.815028 | 0.36847 | 0.281296 |
18 | 16.501312 | 0.34130 | 0.286082 |
19 | 14.662196 | 0.30326 | 0.290126 |
20 | 12.612280 | 0.26086 | 0.293278 |
21 | 11.105364 | 0.22969 | 0.295590 |
22 | 8.891648 | 0.18391 | 0.297369 |
23 | 6.794132 | 0.14052 | 0.298504 |
24 | 4.732816 | 0.09789 | 0.299165 |
Partial Autocorrelations | |
---|---|
Lag | Correlation |
1 | 0.83026 |
2 | 0.09346 |
3 | 0.00385 |
4 | -0.07340 |
5 | -0.00278 |
6 | 0.09013 |
7 | 0.08781 |
8 | 0.10327 |
9 | 0.07240 |
10 | -0.11637 |
11 | 0.08210 |
12 | 0.07580 |
13 | 0.04429 |
14 | 0.11661 |
15 | -0.10446 |
16 | 0.07703 |
17 | 0.07376 |
18 | -0.07080 |
19 | -0.02814 |
20 | -0.08559 |
21 | 0.01962 |
22 | -0.04599 |
23 | -0.07878 |
24 | -0.02303 |
The partial autocorrelation plot in Figure 13.43.75 suggests that the data can be modeled with a first-order autoregressive model, commonly referred to as an AR(1) model.
You can fit this model with the ARIMA procedure. The results in Figure 13.43.76 show that the equation of the fitted model is .
proc arima data=Chemical; identify var=xt; estimate p=1 method=ml; run;
Maximum Likelihood Estimation | |||||
---|---|---|---|---|---|
Parameter | Estimate | Standard Error | t Value | Approx Pr > |t| |
Lag |
MU | 85.28375 | 2.32973 | 36.61 | <.0001 | 0 |
AR1,1 | 0.84694 | 0.05221 | 16.22 | <.0001 | 1 |
Constant Estimate | 13.05329 |
---|---|
Variance Estimate | 14.27676 |
Std Error Estimate | 3.77846 |
AIC | 552.8942 |
SBC | 558.1045 |
Number of Residuals | 100 |
Copyright © SAS Institute, Inc. All Rights Reserved.