The Decomposition Algorithm

References

  • Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows: Theory, Algorithms, and Applications, Englewood Cliffs, NJ: Prentice-Hall.

  • Barnhart, C., Hane, C. A., and Vance, P. H. (2000), “Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems,” Operations Research, 48, 318–326.
    URL http://www.jstor.org/stable/223148

  • Caprara, A., Furini, F., and Malaguti, E. (2010), Exact Algorithms for the Temporal Knapsack Problem, Technical Report OR-10-7, University of Bologna, Department of Electronics, Computer Science, and Systems.

  • Dantzig, G. B. and Wolfe, P. (1960), “Decomposition Principle for Linear Programs,” Operations Research, 8, 101–111.
    URL http://www.jstor.org/stable/167547

  • Galati, M. V. (2009), Decomposition in Integer Linear Programming, Ph.D. diss., Lehigh University.

  • Gamrath, G. (2010), Generic Branch-Cut-and-Price, diploma thesis, Technische Universität Berlin.

  • Koch, T., Achterberg, T., Andersen, E. D., Bastert, O., Berthold, T., Bixby, R. E., Danna, E., Gamrath, G., Gleixner, A. M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D. E., and Wolter, K. (2011), “MIPLIB 2010,” Mathematical Programming Computation, 3, 103–163.
    URL http://mpc.zib.de/index.php/MPC/article/view/56/28

  • Ralphs, T. K. and Galati, M. V. (2006), “Decomposition and Dynamic Cut Generation in Integer Linear Programming,” Mathematical Programming, 106, 261–285.
    URL http://dx.doi.org/10.1007/s10107-005-0606-3

  • Vanderbeck, F. and Savelsbergh, M. W. P. (2006), “A Generic View of Dantzig-Wolfe Decomposition in Mixed Integer Programming,” Operations Research Letters, 34, 296–306.
    URL http://dx.doi.org/10.1016/j.orl.2005.05.009