Previous Page | Next Page

The Interior Point NLP Solver

Example 9.3 Solving NLP Problems with Range Constraints

Often there are constraints with both lower and upper bounds (that is, ). These constraints are called range constraints. The IPNLP solver can handle range constraints in an efficient way. Consider the NLP problem

     

where the values of the parameters , are shown in Table 9.2.

Table 9.2 Data for Example 3

1

85.334407

5

80.51249

9

0.0047026

2

0.0056858

6

0.0071317

10

0.0012547

3

0.0006262

7

0.0029955

11

0.0019085

4

0.0022053

8

0.0021813

12

0.0019085

The initial point used is . You can call the IPNLP solver within PROC OPTMODEL to solve this problem by writing the following statements:


proc optmodel;
   number l {1..5} = [78 33 27 27 27];
   number u {1..5} = [102 45 45 45 45];

   number a {1..12} = 
      [85.334407 0.0056858 0.0006262 0.0022053
      80.51249 0.0071317 0.0029955 0.0021813
      9.300961 0.0047026 0.0012547 0.0019085];

   var x {j in 1..5} >= l[j] <= u[j];

   minimize obj = 5.35*x[3]^2 + 0.83*x[1]*x[5] + 37.29*x[1] 
                  - 40792.141;

   con constr1: 
      0 <= a[1] + a[2]*x[2]*x[5] + a[3]*x[1]*x[4] - 
         a[4]*x[3]*x[5] <= 92;
   con constr2: 
      0 <= a[5] + a[6]*x[2]*x[5] + a[7]*x[1]*x[2] + 
         a[8]*x[3]^2 - 90 <= 20;
   con constr3: 
      0 <= a[9] + a[10]*x[3]*x[5] + a[11]*x[1]*x[3] + 
         a[12]*x[3]*x[4] -20 <= 5;

   x[1] = 78;
   x[2] = 33;
   x[3] = 27;
   x[4] = 27;
   x[5] = 27;

   solve with ipnlp / tech=IPQN;
   print x;
quit;

The summaries and optimal solution are shown in Output 9.3.1. Since this problem contains a small number of variables, the quasi-Newton interior point technique is used (TECH=IPQN).

Output 9.3.1 Summaries and the Optimal Solution
The OPTMODEL Procedure

Problem Summary
Objective Sense Minimization
Objective Function obj
Objective Type Quadratic
   
Number of Variables 5
Bounded Above 0
Bounded Below 0
Bounded Below and Above 5
Free 0
Fixed 0
   
Number of Constraints 3
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 0
Nonlinear Range 3

Solution Summary
Solver IPNLP/IPQN
Objective Function obj
Solution Status Optimal
Objective Value -30689.1889
Iterations 73
   
Infeasibility 2.664535E-15
Optimality Error 5.9764587E-7

[1] x
1 78.000
2 33.000
3 29.995
4 45.000
5 36.776

Previous Page | Next Page | Top of Page