The Interior Point NLP Solver |
This example demonstrates the use of the IPNLP solver to solve the following highly nonlinear optimization problem, which appears in Hock and Schittkowski (1981):
The initial point used is . You can call the IPNLP solver within PROC OPTMODEL to solve the problem by writing the following SAS statements:
proc optmodel; var x{1..8} >=.1 <=10; minimize obj = 0.4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67 +10-x[1]-x[2]; con c1: 1-.0588*x[5]*x[7]-.1*x[1]>=0; con c2: 1-.0588*x[6]*x[8]-.1*x[1]-.1*x[2]>=0; con c3: 1-4*x[3]/x[5]-2/(x[3]^.71*x[5])-.0588*x[7]/x[3]^1.3>=0; con c4: 1-4*x[4]/x[6]-2/(x[4]^.71*x[6])-.0588*x[8]/x[4]^1.3>=0; con c5: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10 -x[1]-x[2]>=.1; con c6: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10 -x[1]-x[2]<=4.2; /* starting point */ x[1] = 6; x[2] = 3; x[3] = .4; x[4] = .2; x[5] = 6; x[6] = 6; x[7] = 1; x[8] = .5; solve with ipnlp / tech=ipqn; print x; quit;
The summaries and the optimal solution are shown in Output 9.1.1. Note that the quasi-Nreton interior point technique is used (TECH=IPQN).
Problem Summary | |
---|---|
Objective Sense | Minimization |
Objective Function | obj |
Objective Type | Nonlinear |
Number of Variables | 8 |
Bounded Above | 0 |
Bounded Below | 0 |
Bounded Below and Above | 8 |
Free | 0 |
Fixed | 0 |
Number of Constraints | 6 |
Linear LE (<=) | 0 |
Linear EQ (=) | 0 |
Linear GE (>=) | 0 |
Linear Range | 0 |
Nonlinear LE (<=) | 1 |
Nonlinear EQ (=) | 0 |
Nonlinear GE (>=) | 5 |
Nonlinear Range | 0 |
Copyright © SAS Institute, Inc. All Rights Reserved.