| The Interior Point NLP Solver |
This example demonstrates the use of the IPNLP solver to solve the following highly nonlinear optimization problem, which appears in Hock and Schittkowski (1981):
![]() |
The initial point used is
. You can call the IPNLP solver within PROC OPTMODEL to solve the problem by writing the following SAS statements:
proc optmodel;
var x{1..8} >=.1 <=10;
minimize obj = 0.4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67
+10-x[1]-x[2];
con c1: 1-.0588*x[5]*x[7]-.1*x[1]>=0;
con c2: 1-.0588*x[6]*x[8]-.1*x[1]-.1*x[2]>=0;
con c3: 1-4*x[3]/x[5]-2/(x[3]^.71*x[5])-.0588*x[7]/x[3]^1.3>=0;
con c4: 1-4*x[4]/x[6]-2/(x[4]^.71*x[6])-.0588*x[8]/x[4]^1.3>=0;
con c5: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10
-x[1]-x[2]>=.1;
con c6: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10
-x[1]-x[2]<=4.2;
/* starting point */
x[1] = 6;
x[2] = 3;
x[3] = .4;
x[4] = .2;
x[5] = 6;
x[6] = 6;
x[7] = 1;
x[8] = .5;
solve with ipnlp / tech=ipqn;
print x;
quit;
The summaries and the optimal solution are shown in Output 9.1.1. Note that the quasi-Nreton interior point technique is used (TECH=IPQN).
| Problem Summary | |
|---|---|
| Objective Sense | Minimization |
| Objective Function | obj |
| Objective Type | Nonlinear |
| Number of Variables | 8 |
| Bounded Above | 0 |
| Bounded Below | 0 |
| Bounded Below and Above | 8 |
| Free | 0 |
| Fixed | 0 |
| Number of Constraints | 6 |
| Linear LE (<=) | 0 |
| Linear EQ (=) | 0 |
| Linear GE (>=) | 0 |
| Linear Range | 0 |
| Nonlinear LE (<=) | 1 |
| Nonlinear EQ (=) | 0 |
| Nonlinear GE (>=) | 5 |
| Nonlinear Range | 0 |
Copyright © SAS Institute, Inc. All Rights Reserved.