Previous Page | Next Page

The Interior Point NLP Solver

Example 9.1 Solving Highly Nonlinear Optimization Problems

This example demonstrates the use of the IPNLP solver to solve the following highly nonlinear optimization problem, which appears in Hock and Schittkowski (1981):

     

The initial point used is . You can call the IPNLP solver within PROC OPTMODEL to solve the problem by writing the following SAS statements:

proc optmodel;
   var x{1..8} >=.1 <=10;
   
   minimize obj = 0.4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67
      +10-x[1]-x[2];

   con c1: 1-.0588*x[5]*x[7]-.1*x[1]>=0;
   con c2: 1-.0588*x[6]*x[8]-.1*x[1]-.1*x[2]>=0;
   con c3: 1-4*x[3]/x[5]-2/(x[3]^.71*x[5])-.0588*x[7]/x[3]^1.3>=0;
   con c4: 1-4*x[4]/x[6]-2/(x[4]^.71*x[6])-.0588*x[8]/x[4]^1.3>=0;
   con c5: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10
      -x[1]-x[2]>=.1;
   con c6: .4*x[1]^.67*x[7]^-.67+.4*x[2]^.67*x[8]^-.67+10
      -x[1]-x[2]<=4.2;

   /* starting point */
   x[1] = 6;
   x[2] = 3;
   x[3] = .4;
   x[4] = .2;
   x[5] = 6;
   x[6] = 6;
   x[7] = 1;
   x[8] = .5;
   
   solve with ipnlp / tech=ipqn;
   print x;
 quit;

The summaries and the optimal solution are shown in Output 9.1.1. Note that the quasi-Nreton interior point technique is used (TECH=IPQN).

Output 9.1.1 Summaries and the Optimal Solution
The OPTMODEL Procedure

Problem Summary
Objective Sense Minimization
Objective Function obj
Objective Type Nonlinear
   
Number of Variables 8
Bounded Above 0
Bounded Below 0
Bounded Below and Above 8
Free 0
Fixed 0
   
Number of Constraints 6
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 1
Nonlinear EQ (=) 0
Nonlinear GE (>=) 5
Nonlinear Range 0

Solution Summary
Solver IPNLP/IPQN
Objective Function obj
Solution Status Optimal
Objective Value 3.9511673625
Iterations 29
   
Infeasibility 5.049056E-12
Optimality Error 7.5708926E-7

[1] x
1 6.46509
2 2.23272
3 0.66740
4 0.59576
5 5.93268
6 5.52724
7 1.01333
8 0.40067

Previous Page | Next Page | Top of Page