The NLP Procedure

Example 4.1: Using the DATA= Option

This example illustrates the use of the DATA= option. The Bard function (refer to Moré, Garbow, and Hillstrom (1981)) is a least-squares problem with  n=3 parameters and  m=15 functions  f_k:

 f(x) = \frac{1}2 \sum_{k=1}^{15} f_k^2(x) ,  x = (x_1,x_2,x_3)
where
 f_k(x) = y_k - ( x_1 + \frac{u_k}{v_k x_2 + w_k x_3} )
with  u_k=k,  v_k=16-k,  w_k=\min(u_k, v_k), and
 y= ( .14, .18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96,   1.34, 2.10, 4.39 )
The minimum function value  f(x^*) = 4.107E-3 is at the point (0.08,1.13,2.34). The starting point  x^0 = (1,1,1) is used.

The following is the naive way of specifying the objective function.

  
 proc nlp tech=levmar; 
    lsq y1-y15; 
    parms x1-x3 = 1; 
    tmp1 = 15 * x2 + min(1,15) * x3; 
    y1 = 0.14 - (x1 + 1 / tmp1); 
    tmp1 = 14 * x2 + min(2,14) * x3; 
    y2 = 0.18 - (x1 + 2 / tmp1); 
    tmp1 = 13 * x2 + min(3,13) * x3; 
    y3 = 0.22 - (x1 + 3 / tmp1); 
    tmp1 = 12 * x2 + min(4,12) * x3; 
    y4 = 0.25 - (x1 + 4 / tmp1); 
    tmp1 = 11 * x2 + min(5,11) * x3; 
    y5 = 0.29 - (x1 + 5 / tmp1); 
    tmp1 = 10 * x2 + min(6,10) * x3; 
    y6 = 0.32 - (x1 + 6 / tmp1); 
    tmp1 = 9 * x2 + min(7,9) * x3; 
    y7 = 0.35 - (x1 + 7 / tmp1); 
    tmp1 = 8 * x2 + min(8,8) * x3; 
    y8 = 0.39 - (x1 + 8 / tmp1); 
    tmp1 = 7 * x2 + min(9,7) * x3; 
    y9 = 0.37 - (x1 + 9 / tmp1); 
    tmp1 = 6 * x2 + min(10,6) * x3; 
    y10 = 0.58 - (x1 + 10 / tmp1); 
    tmp1 = 5 * x2 + min(11,5) * x3; 
    y11 = 0.73 - (x1 + 11 / tmp1); 
    tmp1 = 4 * x2 + min(12,4) * x3; 
    y12 = 0.96 - (x1 + 12 / tmp1); 
    tmp1 = 3 * x2 + min(13,3) * x3; 
    y13 = 1.34 - (x1 + 13 / tmp1); 
    tmp1 = 2 * x2 + min(14,2) * x3; 
    y14 = 2.10 - (x1 + 14 / tmp1); 
    tmp1 = 1 * x2 + min(15,1) * x3; 
    y15 = 4.39 - (x1 + 15 / tmp1); 
 run;
 

A more economical way to program this problem uses the DATA= option to input the 15 terms in  f(x).

  
    data bard; 
       input r @@; 
          w1 = 16. - _n_; 
          w2 = min(_n_ , 16. - _n_); 
          datalines; 
    .14  .18  .22  .25  .29  .32  .35  .39 
    .37  .58  .73  .96 1.34 2.10 4.39 
    ; 
  
    proc nlp data=bard tech=levmar; 
       lsq y; 
       parms x1-x3 = 1.; 
       y = r - (x1 + _obs_ / (w1 * x2 + w2 * x3)); 
    run;
 

Another way you can specify the objective function uses the ARRAY statement and an explicit do loop, as in the following code.

  
    proc nlp tech=levmar; 
       array r[15] .14  .18  .22  .25  .29  .32  .35  .39  .37  .58 
                   .73  .96 1.34 2.10 4.39 ; 
       array y[15] y1-y15; 
       lsq y1-y15; 
       parms x1-x3 = 1.; 
       do i = 1 to 15; 
          w1 = 16. - i; 
          w2 = min(i , w1); 
          w3 = w1 * x2 + w2 * x3; 
          y[i] = r[i] - (x1 + i / w3); 
       end; 
    run;
 

Previous Page | Next Page | Top of Page