Previous Page | Next Page

Functions and CALL Routines

LOGCDF Function



Returns the logarithm of a left cumulative distribution function.
Category: Probability
See: CDF Function

Syntax
Arguments
See Also

Syntax

LOGCDF('dist',quantile<,parm-1,...,parm-k>)


Arguments

'dist'

is a character constant, variable, or expression that identifies the distribution. Valid distributions are as follows:

Distribution Argument
Bernoulli 'BERNOULLI'
Beta 'BETA'
Binomial 'BINOMIAL'
Cauchy 'CAUCHY'
Chi-Square 'CHISQUARE'
Exponential 'EXPONENTIAL'
F 'F'
Gamma 'GAMMA'
Geometric 'GEOMETRIC'
Hypergeometric 'HYPERGEOMETRIC'
Laplace 'LAPLACE'
Logistic 'LOGISTIC'
Lognormal 'LOGNORMAL'
Negative binomial 'NEGBINOMIAL'
Normal 'NORMAL'|'GAUSS'
Normal mixture 'NORMALMIX'
Pareto 'PARETO'
Poisson 'POISSON'
T 'T'
Uniform 'UNIFORM'
Wald (inverse Gaussian) 'WALD'|'IGAUSS'
Weibull 'WEIBULL'

Note:   Except for T, F, and NORMALMIX, you can minimally identify any distribution by its first four characters.  [cautionend]

quantile

is a numeric variable, constant, or expression that specifies the value of a random variable.

parm-1,...,parm-k

are optional shape, location, or scale parameters appropriate for the specific distribution.

The LOGCDF function computes the logarithm of a left cumulative distribution function (logarithm of the left side) from various continuous and discrete distributions. For more information, see the CDF Function.


See Also

Functions:

CDF Function

LOGPDF Function

LOGSDF Function

PDF Function

SDF Function

QUANTILE Function

Previous Page | Next Page | Top of Page