Previous Page | Next Page

Functions and CALL Routines

SDF Function



Returns a survival function.
Category: Probability
See: CDF Function

Syntax
Arguments
Examples
See Also

Syntax

SDF(dist, quantile, parm-1,...,parm-k)

Arguments

dist

is a character string that identifies the distribution. Valid distributions are as follows:

Distribution Argument
Bernoulli BERNOULLI
Beta BETA
Binomial BINOMIAL
Cauchy CAUCHY
Chi-Square CHISQUARE
Exponential EXPONENTIAL
F F
Gamma GAMMA
Geometric GEOMETRIC
Hypergeometric HYPERGEOMETRIC
Laplace LAPLACE
Logistic LOGISTIC
Lognormal LOGNORMAL
Negative binomial NEGBINOMIAL
Normal NORMAL|GAUSS
Normal mixture NORMALMIX
Pareto PARETO
Poisson POISSON
T T
Uniform UNIFORM
Wald (inverse Gaussian) WALD|IGAUSS
Weibull WEIBULL

Note:   Except for T, F, and NORMALMIX, you can minimally identify any distribution by its first four characters.  [cautionend]

quantile

is a numeric constant, variable or expression that specifies the value of a random variable.

parm-1,...,parm-k

are optional shape, location, or scale parameters appropriate for the specific distribution.

The SDF function computes the survival function (upper tail) from various continuous and discrete distributions. For more information, see the Details.


Examples

SAS Statements Results
y=sdf('BERN',0,.25);
0.25
y=sdf('BETA',0.2,3,4);
0.09011
y=sdf('BINOM',4,.5,10);
0.62305
y=sdf('CAUCHY',2);
0.14758
y=sdf('CHISQ',11.264,11);
0.42142
y=sdf('EXPO',1);
0.36788
y=sdf('F',3.32,2,3);
0.17361
y=sdf('GAMMA',1,3);
0.91970
y=sdf('HYPER',2,200,50,10);
0.47633
y=sdf('LAPLACE',1);
0.18394
y=sdf('LOGISTIC',1);
0.26894
y=sdf('LOGNORMAL',1);
0.5
y=sdf('NEGB',1,.5,2);
0.5
y=sdf('NORMAL',1.96);
0.025
y=pdf('NORMALMIX',2.3,3,.33,.33,.34,
       .5,1.5,2.5,.79,1.6,4.3);
 
0.2819
y=sdf('PARETO',1,1);
1
y=sdf('POISSON',2,1);
0.08030
y=sdf('T',.9,5);
0.20469
y=sdf('UNIFORM',0.25);
0.75
y=sdf('WALD',1,2);
0.37230
y=sdf('WEIBULL',1,2);
0.36788


See Also

Functions:

LOGCDF Function

LOGPDF Function

LOGSDF Function

PDF Function

CDF Function

QUANTILE Function

Previous Page | Next Page | Top of Page