Functions and CALL Routines |
Returns a survival function.
SDF(dist, quantile, parm-1,...,parm-k)
|
-
dist
-
is a character string that identifies the
distribution. Valid distributions are as follows:
Distribution |
Argument |
Bernoulli |
BERNOULLI
|
Beta |
BETA
|
Binomial |
BINOMIAL
|
Cauchy |
CAUCHY
|
Chi-Square |
CHISQUARE
|
Exponential |
EXPONENTIAL
|
F |
F
|
Gamma |
GAMMA
|
Geometric |
GEOMETRIC
|
Hypergeometric |
HYPERGEOMETRIC
|
Laplace |
LAPLACE
|
Logistic |
LOGISTIC
|
Lognormal |
LOGNORMAL
|
Negative binomial |
NEGBINOMIAL
|
Normal |
NORMAL|GAUSS
|
Normal mixture |
NORMALMIX
|
Pareto |
PARETO
|
Poisson |
POISSON
|
T |
T
|
Uniform |
UNIFORM
|
Wald (inverse Gaussian) |
WALD|IGAUSS
|
Weibull |
WEIBULL
|
Note: Except for T, F, and NORMALMIX,
you can minimally identify any distribution by its first four characters.
-
quantile
-
is a numeric constant, variable or expression
that specifies the value of a random variable.
-
parm-1,...,parm-k
-
are optional shape, location, or scale parameters appropriate for the specific
distribution.
The SDF function computes the survival function (upper
tail) from various continuous and discrete distributions. For more information,
see the Details.
SAS Statements |
Results |
y=sdf('BERN',0,.25);
|
0.25
|
y=sdf('BETA',0.2,3,4);
|
0.09011
|
y=sdf('BINOM',4,.5,10);
|
0.62305
|
y=sdf('CAUCHY',2);
|
0.14758
|
y=sdf('CHISQ',11.264,11);
|
0.42142
|
y=sdf('EXPO',1);
|
0.36788
|
y=sdf('F',3.32,2,3);
|
0.17361
|
y=sdf('GAMMA',1,3);
|
0.91970
|
y=sdf('HYPER',2,200,50,10);
|
0.47633
|
y=sdf('LAPLACE',1);
|
0.18394
|
y=sdf('LOGISTIC',1);
|
0.26894
|
y=sdf('LOGNORMAL',1);
|
0.5
|
y=sdf('NEGB',1,.5,2);
|
0.5
|
y=sdf('NORMAL',1.96);
|
0.025
|
y=pdf('NORMALMIX',2.3,3,.33,.33,.34,
.5,1.5,2.5,.79,1.6,4.3);
|
0.2819
|
y=sdf('PARETO',1,1);
|
1
|
y=sdf('POISSON',2,1);
|
0.08030
|
y=sdf('T',.9,5);
|
0.20469
|
y=sdf('UNIFORM',0.25);
|
0.75
|
y=sdf('WALD',1,2);
|
0.37230
|
y=sdf('WEIBULL',1,2);
|
0.36788
|
Copyright © 2011 by SAS Institute Inc., Cary, NC, USA. All rights reserved.