Example 13.4 Diffuse Kalman Filtering
The nonstationary SSM is simulated to analyze the diffuse Kalman filter call KALDFF. The transition equation is generated by using the following formula:
where
. The transition equation is nonstationary since the transition matrix
has one unit root. Here is the code:
proc iml;
z_1 = 0; z_2 = 0;
do i = 1 to 30;
z = 1.5*z_1 - .5*z_2 + rannor(1234567);
z_2 = z_1;
z_1 = z;
x = z + .8*rannor(1234578);
if ( i > 10 ) then y = y // x;
end;
The KALDFF and KALCVF calls produce one-step prediction, and the result shows that two predictions coincide after the fifth observation (Output 13.4.1). Here is the code:
t = nrow(y);
h = { 1 0 };
f = { 1.5 -.5, 1 0 };
rt = .64;
vt = diag({1 0});
ny = nrow(h);
nz = ncol(h);
nb = nz;
nd = nz;
a = j(nz,1,0);
b = j(ny,1,0);
int = j(ny+nz,nb,0);
coef = f // h;
var = ( vt || j(nz,ny,0) ) //
( j(ny,nz,0) || rt );
intd = j(nz+nb,1,0);
coefd = i(nz) // j(nb,nd,0);
at = j(t*nz,nd+1,0);
mt = j(t*nz,nz,0);
qt = j(t*(nd+1),nd+1,0);
n0 = -1;
call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,
coef,var,intd,coefd,n0,at,mt,qt);
call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
print kalcvf_p kaldff_p;
Output 13.4.1
Diffuse Kalman Filtering
0 |
0 |
0 |
0 |
1.441911 |
0.961274 |
1.1214871 |
0.9612746 |
-0.882128 |
-0.267663 |
-0.882138 |
-0.267667 |
-0.723156 |
-0.527704 |
-0.723158 |
-0.527706 |
1.2964969 |
0.871659 |
1.2964968 |
0.8716585 |
-0.035692 |
0.1379633 |
-0.035692 |
0.1379633 |
-2.698135 |
-1.967344 |
-2.698135 |
-1.967344 |
-5.010039 |
-4.158022 |
-5.010039 |
-4.158022 |
-9.048134 |
-7.719107 |
-9.048134 |
-7.719107 |
-8.993153 |
-8.508513 |
-8.993153 |
-8.508513 |
-11.16619 |
-10.44119 |
-11.16619 |
-10.44119 |
-10.42932 |
-10.34166 |
-10.42932 |
-10.34166 |
-8.331091 |
-8.822777 |
-8.331091 |
-8.822777 |
-9.578258 |
-9.450848 |
-9.578258 |
-9.450848 |
-6.526855 |
-7.241927 |
-6.526855 |
-7.241927 |
-5.218651 |
-5.813854 |
-5.218651 |
-5.813854 |
-5.01855 |
-5.291777 |
-5.01855 |
-5.291777 |
-6.5699 |
-6.284522 |
-6.5699 |
-6.284522 |
-4.613301 |
-4.995434 |
-4.613301 |
-4.995434 |
-5.057926 |
-5.09007 |
-5.057926 |
-5.09007 |
The likelihood function for the diffuse Kalman filter under the finite initial covariance matrix
is written
where
is the dimension of the matrix
. The likelihood function for the diffuse Kalman filter under the diffuse initial covariance matrix
is computed as
, where the
matrix is the upper
matrix of
. Output 13.4.2 displays the log likelihood and the diffuse log likelihood. Here is the code:
d = 0;
do i = 1 to t;
dt = h*mt[(i-1)*nz+1:i*nz,]*h` + rt;
d = d + log(det(dt));
end;
s = qt[(t-1)*(nd+1)+1:t*(nd+1)-1,1:nd];
log_l = -(t*log(s2) + d)/2;
dff_logl = log_l - log(det(s))/2;
print log_l dff_logl;
Output 13.4.2
Diffuse Likelihood Function