General Statistics Examples |
The following statements define modules to compute correlation coefficients between numeric variables and standardized values for a set of data:
ods trace output; PROC IML; /* Module to compute correlations */ start corr; n = nrow(x); /* number of observations */ sum = x[+,] ; /* compute column sums */ xpx = t(x)*x-t(sum)*sum/n; /* compute sscp matrix */ s = diag(1/sqrt(vecdiag(xpx))); /* scaling matrix */ corr = s*xpx*s; /* correlation matrix */ print "Correlation Matrix",,corr[rowname=nm colname=nm] ; finish corr; /* Module to standardize data */ start std; mean = x[+,] /n; /* means for columns */ x = x-repeat(mean,n,1); /* center x to mean zero */ ss = x[##,] ; /* sum of squares for columns */ std = sqrt(ss/(n-1)); /* standard deviation estimate*/ x = x*diag(1/std); /* scaling to std dev 1 */ print ,"Standardized Data",,X[colname=nm] ; finish std; /* Sample run */ x = { 1 2 3, 3 2 1, 4 2 1, 0 4 1, 24 1 0, 1 3 8}; nm={age weight height}; run corr; run std;
The results are shown in Output 9.1.1.
Copyright © SAS Institute, Inc. All Rights Reserved.