Robust Regression Examples

Example 9.1: LMS and LTS with Substantial Leverage Points: Hertzsprung-Russell Star Data

The following data are reported in Rousseeuw and Leroy (1987, p. 27) and are based on Humphreys (1978) and Vansina and De Greve (1982). The 47 observations correspond to the 47 stars of the CYG OB1 cluster in the direction of the constellation Cygnus. The regressor variable (column 2) x is the logarithm of the effective temperature at the surface of the star (t_e), and the response variable (column 3) y is the logarithm of its light intensity (l / l_0). The results for LS and LMS on page 28 of Rousseeuw and Leroy (1987) are based on a more precise (five decimal places) version of the data set. This data set is remarkable in that it contains four substantial leverage points (representing giant stars) corresponding to observations 11, 20, 30, and 34 that greatly affect the results of l_2 and even l_1 regression.

  
    ab =  { 1  4.37  5.23,   2  4.56  5.74,   3  4.26  4.93, 
            4  4.56  5.74,   5  4.30  5.19,   6  4.46  5.46, 
            7  3.84  4.65,   8  4.57  5.27,   9  4.26  5.57, 
           10  4.37  5.12,  11  3.49  5.73,  12  4.43  5.45, 
           13  4.48  5.42,  14  4.01  4.05,  15  4.29  4.26, 
           16  4.42  4.58,  17  4.23  3.94,  18  4.42  4.18, 
           19  4.23  4.18,  20  3.49  5.89,  21  4.29  4.38, 
           22  4.29  4.22,  23  4.42  4.42,  24  4.49  4.85, 
           25  4.38  5.02,  26  4.42  4.66,  27  4.29  4.66, 
           28  4.38  4.90,  29  4.22  4.39,  30  3.48  6.05, 
           31  4.38  4.42,  32  4.56  5.10,  33  4.45  5.22, 
           34  3.49  6.29,  35  4.23  4.34,  36  4.62  5.62, 
           37  4.53  5.10,  38  4.45  5.22,  39  4.53  5.18, 
           40  4.43  5.57,  41  4.38  4.62,  42  4.45  5.06, 
           43  4.50  5.34,  44  4.45  5.34,  45  4.55  5.54, 
           46  4.45  4.98,  47  4.42  4.50 } ; 
  
    a = ab[,2]; b = ab[,3];
 
The following statements specify that most of the output be printed:
  
    print "*** Hertzsprung-Russell Star Data: Do LMS ***"; 
       optn = j(9,1,.); 
       optn[2]= 3;    /* ipri */ 
       optn[3]= 3;    /* ilsq */ 
       optn[8]= 3;    /* icov */ 
    call lms(sc,coef,wgt,optn,b,a);
 

Some simple statistics for the independent and response variables are shown in Output 9.1.1.

Output 9.1.1: Some Simple Statistics
 
 
Median and Mean
  Median Mean
VAR1 4.42 4.31
Intercep 1 1
Response 5.1 5.0121276596
 
Dispersion and Standard Deviation
  Dispersion StdDev
VAR1 0.163086244 0.2908234187
Intercep 0 0
Response 0.6671709983 0.5712493409



Partial output for LS regression is shown in Output 9.1.2.

Output 9.1.2: Table of Unweighted LS Regression
 
Unweighted Least-Squares Estimation
LS Parameter Estimates
Variable Estimate Approx
Std Err
t Value Pr > |t| Lower WCI Upper WCI
VAR1 -0.4133039 0.28625748 -1.44 0.1557 -0.9743582 0.14775048
Intercep 6.7934673 1.23651563 5.49 <.0001 4.3699412 9.21699339
 
Sum of Squares = 14.346394626
 
Degrees of Freedom = 45
 
LS Scale Estimate = 0.5646315343
Cov Matrix of Parameter Estimates
  VAR1 Intercep
VAR1 0.0819433428 -0.353175807
Intercep -0.353175807 1.5289708954
 
R-squared = 0.0442737441
 
F(1,45) Statistic = 2.0846120667
 
Probability = 0.1557164396



Output 9.1.3 displays the iteration history. Looking at the column Best Crit in the iteration history table, you see that, with complete enumeration, the optimal solution is quickly found.

Output 9.1.3: History of the Iteration Process
 
Complete Enumeration for LMS 

 
Subset Singular Best 
Criterion
Percent
271 5 0.392791 25
541 8 0.392791 50
811 27 0.392791 75
1081 45 0.392791 100
 
 
Minimum Criterion= 0.3927910898
 
Least Median of Squares (LMS) Method
 
Minimizing 25th Ordered Squared Residual.
 
Highest Possible Breakdown Value = 48.94 %
 
Selection of All 1081 Subsets of 2 Cases Out of 47
 
Among 1081 subsets 45 are singular.



The results of the optimization for LMS estimation are displayed in Output 9.1.4.

Output 9.1.4: Results of Optimization
Observations of Best Subset
2 29

 
 
Estimated Coefficients
VAR1 Intercep
3.9705882353 -12.62794118
 
LMS Objective Function = 0.2620588235
 
Preliminary LMS Scale = 0.3987301586
 
Robust R Squared = 0.5813148789
 
Final LMS Scale = 0.3645644492

 



Output 9.1.5 displays the results for WLS regression. Due to the size of the scaled residuals, six observations (with numbers 7, 9, 11, 20, 30, 34) were assigned zero weights in the following WLS analysis.

The LTS regression implements the FAST-LTS algorithm, which improves the algorithm (used in SAS/IML Version 7 and earlier versions, denoted as V7 LTS in this chapter) in Rousseeuw and Leroy (1987) by using techniques called "selective iteration" and "nested extensions." These techniques are used in the C-steps of the algorithm. See Rousseeuw and Van Driessen (2000) for details. The FAST-LTS algorithm significantly improves the speed of computation.

Output 9.1.5: Table of Weighted LS Regression Based on LMS
 
Weighted Least-Squares Estimation
RLS Parameter Estimates Based on LTS
Variable Estimate Approx 
Std Err
t Value Pr > |t| Lower WCI Upper WCI
VAR1 3.04615694 0.43733923 6.97 <.0001 2.18898779 3.90332608
Intercep -8.5000549 1.92630783 -4.41 <.0001 -12.275549 -4.7245609
 
 
Weighted Sum of Squares = 4.52819451
 
Degrees of Freedom = 39
 
RLS Scale Estimate = 0.3407455818
Cov Matrix of Parameter Estimates
  VAR1 Intercep
VAR1 0.1912656038 -0.842128459
Intercep -0.842128459 3.7106618752
 
 
Weighted R-squared = 0.5543573521
 
F(1,39) Statistic = 48.514065776
 
Probability = 2.3923178E-8
 
There are 41 points with nonzero weight.
 
Average Weight = 0.8723404255



The following statements implement the LTS regression on the Hertzsprung-Russell star data:

  
    print "*** Hertzsprung-Russell Star Data: Do LTS ***"; 
       optn = j(9,1,.); 
       optn[2]= 3;    /* ipri */ 
       optn[3]= 3;    /* ilsq */ 
       optn[8]= 3;    /* icov */ 
    call lts(sc,coef,wgt,optn,b,a);
 

Output 9.1.6 summarizes the information for the LTS optimization.

Output 9.1.6: Summary of Optimization
 
LTS: The sum of the 25 smallest squared residuals will be minimized.

Unweighted Least-Squares Estimation

Sum of Squares = 14.346394626

Degrees of Freedom = 45

LS Scale Estimate = 0.5646315343

R-squared = 0.0442737441

F(1,45) Statistic = 2.0846120667

Probability = 0.1557164396

Distribution of Residuals

Least Trimmed Squares (LTS) Method

Least Trimmed Squares (LTS) Method

Minimizing Sum of 25 Smallest Squared Residuals.

Highest Possible Breakdown Value = 48.94 %

Selection of All 1081 Subsets of 2 Cases Out of 47

Among 1081 subsets 45 is/are singular.

The best half of the entire data set obtained after full iteration consists of the cases:

2 4 6 10 13 15 17 19 21 22 25 27 28 29 33 35 36 38 39 41 42 43 44 45 46

LTS Objective Function = 0.1829636959

Preliminary LTS Scale = 0.4524915298

Robust R Squared = 0.4039971838

Final LTS Scale = 0.3731970408

Distribution of Residuals

Weighted Least-Squares Estimation

Weighted Sum of Squares = 4.52819451

Degrees of Freedom = 39

RLS Scale Estimate = 0.3407455818

Weighted R-squared = 0.5543573521

F(1,39) Statistic = 48.514065776

Probability = 2.3923178E-8

There are 41 points with nonzero weight.

Average Weight = 0.8723404255

Distribution of Residuals

The run has been executed successfully.



Output 9.1.7 displays the optimization results and Output 9.1.8 displays the weighted LS regression based on LTS estimates.

Output 9.1.7: Results of Optimization
 
Estimated Coefficients
VAR1 Intercep
4.219182102 -13.6239903



Output 9.1.8: Table of Weighted LS Regression Based on LTS
 
LS Parameter Estimates
Variable Estimate Approx
Std Err
t Value Pr > |t| Lower WCI Upper WCI
VAR1 -0.4133039 0.28625748 -1.44 0.1557 -0.9743582 0.14775048
Intercep 6.7934673 1.23651563 5.49 <.0001 4.3699412 9.21699339
 
Cov Matrix of Parameter Estimates
  VAR1 Intercep
VAR1 0.0819433428 -0.353175807
Intercep -0.353175807 1.5289708954
 
RLS Parameter Estimates Based on LTS
Variable Estimate Approx
Std Err
t Value Pr > |t| Lower WCI Upper WCI
VAR1 3.04615694 0.43733923 6.97 <.0001 2.18898779 3.90332608
Intercep -8.5000549 1.92630783 -4.41 <.0001 -12.275549 -4.7245609
 
Cov Matrix of Parameter Estimates
  VAR1 Intercep
VAR1 0.1912656038 -0.842128459
Intercep -0.842128459 3.7106618752



Previous Page | Next Page | Top of Page