Language Reference |
evaluates the thin-plate smoothing spline at new data points
It can be used only after the TPSPLINE call.
As an example, consider the following data set, which consists of two independent variables. The plot of the raw data can be found in the first panel of Figure 20.1.
x={ -1.0 -1.0, -1.0 -1.0, -.5 -1.0, -.5 -1.0, .0 -1.0, .0 -1.0, .5 -1.0, .5 -1.0, 1.0 -1.0, 1.0 -1.0, -1.0 -.5, -1.0 -.5, -.5 -.5, -.5 -.5, .0 -.5, .0 -.5, .5 -.5, .5 -.5, 1.0 -.5, 1.0 -.5, -1.0 .0, -1.0 .0, -.5 .0, -.5 .0, .0 .0, .0 .0, .5 .0, .5 .0, 1.0 .0, 1.0 .0, -1.0 .5, -1.0 .5, -.5 .5, -.5 .5, .0 .5, .0 .5, .5 .5, .5 .5, 1.0 .5, 1.0 .5, -1.0 1.0, -1.0 1.0, -.5 1.0, -.5 1.0, .0 1.0, .0 1.0, .5 1.0, .5 1.0, 1.0 1.0, 1.0 1.0 }; y={15.54483570, 15.76312613, 18.67397826, 18.49722167, 19.66086310, 19.80231311, 18.59838649, 18.51904737, 15.86842815, 16.03913832, 10.92383867, 11.14066546, 14.81392847, 14.82830425, 16.56449698, 16.44307297, 14.90792284, 15.05653924, 10.91956264, 10.94227538, 9.614920104, 9.646480938, 14.03133439, 14.03122345, 15.77400253, 16.00412514, 13.99627680, 14.02826553, 9.557001644, 9.584670472, 11.20625177, 11.08651907, 14.83723493, 14.99369172, 16.55494349, 16.51294369, 14.98448603, 14.71816070, 11.14575565, 11.17168689, 15.82595514, 15.96022497, 18.64014953, 18.56095997, 19.54375504, 19.80902641, 18.56884576, 18.61010439, 15.86586951, 15.90136745 };Now generate a sequence of from -3.8 to -3.3 so that you can study the GCV function within this range. Use the following statement:
lambda=T(do(-3.8,-3.3,0.1));Use the following IML statement to do the thin-plate smoothing spline fit and returning the fitted values on those design points.
call tpspline(fit,coef,adiag,gcv, x, y,lambda);The output from this call follows.
SUMMARY OF TPSPLINE CALL Number of observations 50 Number of unique design points 25 Dimension of polynomial Space 3 Number of Parameters 28 GCV Estimate of Lambda 0.00000668 Smoothing Penalty 2558.14323 Residual Sum of Squares 0.24611 Trace of (I-A) 25.40680 Sigma^2 estimate 0.00969 Sum of Squares for Replication 0.24223
After this TPSPLINE call, you obtained the fitted value. The fitted surface is plotted in the second panel of Figure 20.1. Also in Figure 20.1, panel 4, you plot the GCV function values against lambda. From panel 2, you see that because of the spare design points, the fitted surface is a little bit rough. In order to study the TPSS fit more closely, you use the following IML statements to generate a more dense grid on .
do i1=-1 to 1 by 0.1; do i2=-1 to 1 by 0.1; x1=x1||i1; x2=x2||i2; end; end; x1=t(x1); x2=t(x2); xpred=x1||x2;Now you can use the function TPSPLNEV to evaluate on this dense grid. Here is the statement:
call tpsplnev(pred, xpred, x, coef);The final fitted surface is plotted in Figure 20.1, panel 3.
Figure 20.1: Plots of Fitted Surface
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.