The ENTROPY Procedure (Experimental)

Maximum Entropy-Based Seemingly Unrelated Regression

In a multivariate regression model, the errors in different equations might be correlated. In this case, the efficiency of the estimation can be improved by taking these cross-equation correlations into account. Seemingly unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner estimation, is a generalization of OLS for multi-equation systems.

Like SUR in the least squares setting, the generalized maximum entropy SUR (GME-SUR) method assumes that all the regressors are independent variables and uses the correlations among the errors in different equations to improve the regression estimates. The GME-SUR method requires an initial entropy regression to compute residuals. The entropy residuals are used to estimate the cross-equation covariance matrix.

In the iterative GME-SUR (ITGME-SUR) case, the preceding process is repeated by using the residuals from the GME-SUR estimation to estimate a new cross-equation covariance matrix. ITGME-SUR method alternates between estimating the system coefficients and estimating the cross-equation covariance matrix until the estimated coefficients and covariance matrix converge.

The estimation problem becomes the generalized maximum entropy system adapted for multi-equations as follows:

$\displaystyle  \mr {maximize}  $
$\displaystyle  H(p,w) \:  = \:  -p’ \,  \ln (p) \:  - \:  w’ \,  \ln (w)  $
$\displaystyle \mr {subject\,  to}  $
$\displaystyle  y \:  = \:  X \,  Z \,  p \:  + \:  V \,  w  $
$\displaystyle  $
$\displaystyle  1_{KM} \:  = \:  (I_{KM} \,  \otimes \,  1_{L}’) \,  p  $
$\displaystyle  $
$\displaystyle  1_{MT} \:  = \:  (I_{MT} \,  \otimes \,  1_{L}’) \,  w  $

where

\[  \beta \:  = \:  Z \,  p  \]
\[  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \! \  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  Z \:  = \: \left[ \begin{array}{ccccccccccccccc} z_{11}^{1} &  \cdot \cdot \cdot &  z_{L1}^{1} &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  \ddots &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  z_{11}^{K} &  \cdot \cdot \cdot &  z_{L1}^{K} &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  \ddots &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  z_{1M}^{1} &  \cdot \cdot \cdot &  z_{LM}^{1} &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  \ddots &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  z_{1M}^{K} &  \cdot \cdot \cdot &  z_{LM}^{K} \end{array} \right]  \]
\[  p \:  = \:  \left[ \begin{array}{ccccccccccccccc} p_{11}^{1} &  \cdot &  p_{L1}^{1} &  \cdot &  p_{11}^{K} &  \cdot &  p_{L1}^{K} &  \cdot &  p_{1M}^{1} &  \cdot &  p_{LM}^{1} &  \cdot &  p_{1M}^{K} &  \cdot &  p_{LM}^{K} \end{array} \right]’   \]
\[  e \:  = \:  V \,  w  \]
\[  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \! \  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  V \: = \:  \left[ \begin{array}{ccccccccccccccc} v_{11}^{1} &  \cdot \cdot \cdot &  v_{11}^{L} &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  \ddots &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  v_{1T}^{1} &  \cdot \cdot \cdot &  v_{1T}^{L} &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  \ddots &  0 &  0 &  0 &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  v_{M1}^{1} &  \cdot \cdot \cdot &  v_{M1}^{L} &  0 &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  \ddots &  0 &  0 &  0 \\ 0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  0 &  v_{MT}^{1} &  \cdot \cdot \cdot &  v_{MT}^{L} \end{array} \right]  \]
\[  \!  \!  \!  \!  \!  \!  \!  \!  \!  \!  w \:  = \:  \left[ \begin{array}{ccccccccccccccc} w_{11}^{1} &  \cdot &  w_{11}^{L} &  \cdot &  w_{1T}^{1} &  \cdot &  w_{1T}^{L} &  \cdot &  w_{M1}^{1} &  \cdot &  w_{M1}^{L} &  \cdot &  w_{MT}^{1} &  \cdot &  w_{MT}^{L} \end{array} \right]’ \,   \]

y denotes the MT column vector of observations of the dependent variables; $\mb {X}$ denotes the (MT x KM ) matrix of observations for the independent variables; p denotes the LKM column vector of weights associated with the points in Z; w denotes the LMT column vector of weights associated with the points in V; $1_{L}$, $1_{KM}$, and $1_{MT}$ are L-, KM-, and MT-dimensional column vectors, respectively, of ones; and $\mb {I_{KM}}$ and $\mb {I_{MT}}$ are (KM x KM) and (MT x MT) dimensional identity matrices. The subscript l denotes the support point $(l=1, 2, \ldots , L)$, k denotes the parameter $(k=1, 2, \ldots , K)$, m denotes the equation $(m=1, 2, \ldots , M)$, and t denotes the observation $(t=1, 2, \ldots ,T)$.

Using this notation, the maximum entropy problem that is analogous to the OLS problem used as the initial step of the traditional SUR approach is

$\displaystyle  \mr {maximize}  $
$\displaystyle  H(p,w) \:  = \:  -p’ \,  \ln (p) \:  - \:  w’ \,  \ln (w)  $
$\displaystyle \mr {subject\,  to}  $
$\displaystyle  \,  (y \:  - \:  X \,  Z \,  p ) \:  = \sqrt {\Sigma } \:  V \,  w  $
$\displaystyle  $
$\displaystyle  1_{KM} \:  = \:  (I_{KM} \,  \otimes \,  1_{L}’) \,  p  $
$\displaystyle  $
$\displaystyle  1_{MT} \:  = \:  (I_{MT} \,  \otimes \,  1_{L}’) \,  w  $

The results are GME-SUR estimates with independent errors, the analog of OLS. The covariance matrix $\hat{\Sigma }$ is computed based on the residual of the equations, $Vw=e$. An $L’L$ factorization of the $\hat{\Sigma }$ is used to compute the square root of the matrix.

After solving this problem, these entropy-based estimates are analogous to the Aitken two-step estimator. For iterative GME-SUR, the covariance matrix of the errors is recomputed, and a new $\hat{\Sigma }$ is computed and factored. As in traditional ITSUR, this process repeats until the covariance matrix and the parameter estimates converge.

The estimation of the parameters for the normed-moment version of SUR (GME-SUR-NM) uses an identical process. The constraints for GME-SUR-NM is defined as:

\[  X’y \:  = \:  X’(\mb {S} ^{-1} {\otimes } \mb {I} )X \,  Z \,  p \:  + \:  X’(\mb {S} ^{-1} {\otimes } \mb {I} )V \,  w  \]

The estimation of the parameters for GME-SUR-NM uses an identical process as outlined previously for GME-SUR.