Previous Page | Next Page

The MODEL Procedure

Example 18.15 Simulated Method of Moments—Simple Linear Regression

This example illustrates how to use SMM to estimate a simple linear regression model for the following process:

     

In the following SAS statements, is simulated, and the first moment and the second moment of are compared with those of the observed endogenous variable .

   title "Simple regression model";
   
   data regdata;
      do i=1 to 500;
         x = rannor( 1013 );
         Y = 2 + 1.5 * x + 1.5 * rannor( 9871 );
         output;
      end;
   run;
   
   proc model data=regdata;
      parms a b s;
      instrument x;
   
      ysim = (a+b*x) + s * rannor( 8003 );
      y = ysim;
      eq.ysq = y*y - ysim*ysim;
   
      fit y ysq / gmm ndraw;
      bound s > 0;
   run;

The output of the MODEL procedure is shown in Output 18.15.1:

Output 18.15.1 PROC MODEL Output
Simple regression model

The MODEL Procedure

Model Summary
Model Variables 1
Parameters 3
Equations 2
Number of Statements 4

Model Variables Y
Parameters a b s
Equations ysq Y

The 2 Equations to Estimate
Y = F(a(1), b(x), s)
ysq = F(a, b, s)
Instruments 1 x

Nonlinear GMM Parameter Estimates
Parameter Estimate Approx Std Err t Value Approx
Pr > |t|
a 2.065983 0.0657 31.45 <.0001
b 1.511075 0.0565 26.73 <.0001
s 1.483358 0.0498 29.78 <.0001

Previous Page | Next Page | Top of Page