This example uses pseudo-random samples from a uniform distribution, an exponential distribution, and a bimodal mixture of two normal distributions. Results are presented in Output 78.1.1 through Output 78.1.18 as plots displaying both the true density and the estimated density, as well as cluster membership.
The following statements produce Output 78.1.1 through Output 78.1.4:
title 'Modeclus Example with Univariate Distributions'; title2 'Uniform Distribution'; data uniform; drop n; true=1; do n=1 to 100; x=ranuni(123); output; end; run;
proc modeclus data=uniform m=1 k=10 20 40 60 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 2 by 1.); yaxis values=(0 to 3 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _K_; run;
proc modeclus data=uniform m=1 r=.05 .10 .20 .30 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 2 by 1.); yaxis values=(0 to 2 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_; run;
Output 78.1.1: Cluster Analysis of Sample from a Uniform Distribution
Output 78.1.2: True Density, Estimated Density, and Cluster Membership by Various _K_ Values
Output 78.1.3: Cluster Analysis of Sample from a Uniform Distribution
Output 78.1.4: True Density, Estimated Density, and Cluster Membership by Various _R_ Values
The following statements produce Output 78.1.5 through Output 78.1.12:
data expon; title2 'Exponential Distribution'; drop n; do n=1 to 100; x=ranexp(123); true=exp(-x); output; end; run;
proc modeclus data=expon m=1 k=10 20 40 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 2 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _K_; run;
proc modeclus data=expon m=1 r=.20 .40 .80 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 1 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_; run;
title3 'Different Density-Estimation and Clustering Windows'; proc modeclus data=expon m=1 r=.20 ck=10 20 40 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 1 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _CK_; run;
title3 'Cascaded Density Estimates Using Arithmetic Means'; proc modeclus data=expon m=1 r=.20 cascade=1 2 4 am out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 1 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_ _CASCAD_; run;
Output 78.1.5: Cluster Analysis of Sample from an Exponential Distribution
Output 78.1.6: True Density, Estimated Density, and Cluster Membership by Various _K_ Values
Output 78.1.7: Cluster Analysis of Sample from an Exponential Distribution
Output 78.1.8: True Density, Estimated Density, and Cluster Membership by Various _R_ Values
Output 78.1.9: Cluster Analysis of Sample from an Exponential Distribution
Output 78.1.10: True Density, Estimated Density, and Cluster Membership by _R_=0.2 with Various _CK_ Values
Output 78.1.11: Cluster Analysis of Sample from an Exponential Distribution
Output 78.1.12: True Density, Estimated Density, and Cluster Membership by _R_=0.2 with Various _CASCAD_ Values
The following statements produce Output 78.1.13 through Output 78.1.18:
title2 'Normal Mixture Distribution'; data normix; drop n sigma; sigma=.125; do n=1 to 100; x=rannor(456)*sigma+mod(n,2)/2; true=exp(-.5*(x/sigma)**2)+exp(-.5*((x-.5)/sigma)**2); true=.5*true/(sigma*sqrt(2*3.1415926536)); output; end; run;
proc modeclus data=normix m=1 k=10 20 40 60 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1.6 by .1); yaxis values=(0 to 3 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _K_; run;
proc modeclus data=normix m=1 r=.05 .10 .20 .30 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1.6 by .1); yaxis values=(0 to 3 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_; run;
title3 'Cascaded Density Estimates Using Arithmetic Means'; proc modeclus data=normix m=1 r=.05 cascade=1 2 4 am out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1.6 by .1); yaxis values=(0 to 2 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_ _CASCAD_; run;
Output 78.1.13: Cluster Analysis of Sample from a Bimodal Mixture of Two Normal Distributions
Output 78.1.14: True Density, Estimated Density, and Cluster Membership by Various _K_ Values
Output 78.1.15: Cluster Analysis of Sample from a Bimodal Mixture of Two Normal Distributions
Output 78.1.16: True Density, Estimated Density, and Cluster Membership by Various _R_= Values
Output 78.1.17: Cluster Analysis of Sample from a Bimodal Mixture of Two Normal Distributions
Output 78.1.18: True Density, Estimated Density, and Cluster Membership by _R_=0.05 with Various _CASCAD_ Values