Introduction to Statistical Modeling with SAS/STAT Software


References

  • Allen, D. M. (1974). “The Relationship between Variable Selection and Data Augmentation and a Method of Prediction.” Technometrics 16:125–127.

  • Cochran, W. G. (1977). Sampling Techniques. 3rd ed. New York: John Wiley & Sons.

  • Goodnight, J. H. (1979). “A Tutorial on the Sweep Operator.” American Statistician 33:149–158.

  • Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. New York: Springer-Verlag.

  • Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer-Verlag.

  • Jöreskog, K. G. (1973). “A General Method for Estimating a Linear Structural Equation System.” In Structural Equation Models in the Social Sciences, edited by A. S. Goldberger, and O. D. Duncan, 85–112. New York: Academic Press.

  • Keesling, J. W. (1972). Maximum Likelihood Approaches to Causal Analysis. Ph.D. diss., University of Chicago.

  • Magnus, J. R., and Neudecker, H. (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: John Wiley & Sons.

  • McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.

  • Moore, E. H. (1920). “On the Reciprocal of the General Algebraic Matrix.” Bulletin of the American Mathematical Society 26:394–395.

  • Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.

  • Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford: Clarendon Press.

  • Penrose, R. A. (1955). “A Generalized Inverse for Matrices.” Proceedings of the Cambridge Philosophical Society 51:406–413.

  • Pringle, R. M., and Rayner, A. A. (1971). Generalized Inverse Matrices with Applications to Statistics. New York: Hafner Publishing.

  • Särndal, C. E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer-Verlag.

  • Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons.

  • Spearman, C. (1904). “General Intelligence Objectively Determined and Measured.” American Journal of Psychology 15:201–293.

  • Wedderburn, R. W. M. (1974). “Quasi-likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method.” Biometrika 61:439–447.

  • Wiley, D. E. (1973). “The Identification Problem for Structural Equation Models with Unmeasured Variables.” In Structural Equation Models in the Social Sciences, edited by A. S. Goldberger, and O. D. Duncan, 69–83. New York: Academic Press.