| The SHEWHART Procedure |
You can diagnose autocorrelation with an autocorrelation plot created with the ARIMA procedure.
title ; proc arima data=Chemical; identify var = xt; run;
Refer to SAS/ETS 9.22 User's Guide for details on the ARIMA procedure. The plot, shown in Figure 13.43.75, indicates that the data are highly autocorrelated with a lag 1 autocorrelation of 0.83.
| Autocorrelations | |||
|---|---|---|---|
| Lag | Covariance | Correlation | Std Error |
| 0 | 48.348400 | 1.00000 | 0 |
| 1 | 40.141884 | 0.83026 | 0.100000 |
| 2 | 34.732168 | 0.71837 | 0.154229 |
| 3 | 29.950852 | 0.61948 | 0.184683 |
| 4 | 24.739536 | 0.51169 | 0.204409 |
| 5 | 20.594420 | 0.42596 | 0.216840 |
| 6 | 18.427704 | 0.38114 | 0.225052 |
| 7 | 17.400188 | 0.35989 | 0.231417 |
| 8 | 17.621272 | 0.36446 | 0.236948 |
| 9 | 18.363756 | 0.37982 | 0.242489 |
| 10 | 16.754040 | 0.34653 | 0.248367 |
| 11 | 16.844924 | 0.34841 | 0.253156 |
| 12 | 17.137208 | 0.35445 | 0.257906 |
| 13 | 16.884092 | 0.34922 | 0.262732 |
| 14 | 17.927976 | 0.37081 | 0.267334 |
| 15 | 16.801860 | 0.34752 | 0.272429 |
| 16 | 17.076544 | 0.35320 | 0.276826 |
| 17 | 17.815028 | 0.36847 | 0.281296 |
| 18 | 16.501312 | 0.34130 | 0.286082 |
| 19 | 14.662196 | 0.30326 | 0.290126 |
| 20 | 12.612280 | 0.26086 | 0.293278 |
| 21 | 11.105364 | 0.22969 | 0.295590 |
| 22 | 8.891648 | 0.18391 | 0.297369 |
| 23 | 6.794132 | 0.14052 | 0.298504 |
| 24 | 4.732816 | 0.09789 | 0.299165 |
| Partial Autocorrelations | |
|---|---|
| Lag | Correlation |
| 1 | 0.83026 |
| 2 | 0.09346 |
| 3 | 0.00385 |
| 4 | -0.07340 |
| 5 | -0.00278 |
| 6 | 0.09013 |
| 7 | 0.08781 |
| 8 | 0.10327 |
| 9 | 0.07240 |
| 10 | -0.11637 |
| 11 | 0.08210 |
| 12 | 0.07580 |
| 13 | 0.04429 |
| 14 | 0.11661 |
| 15 | -0.10446 |
| 16 | 0.07703 |
| 17 | 0.07376 |
| 18 | -0.07080 |
| 19 | -0.02814 |
| 20 | -0.08559 |
| 21 | 0.01962 |
| 22 | -0.04599 |
| 23 | -0.07878 |
| 24 | -0.02303 |
The partial autocorrelation plot in Figure 13.43.75 suggests that the data can be modeled with a first-order autoregressive model, commonly referred to as an AR(1) model.
![]() |
You can fit this model with the ARIMA procedure. The results in Figure 13.43.76 show that the equation of the fitted model is
.
proc arima data=Chemical; identify var=xt; estimate p=1 method=ml; run;
| Maximum Likelihood Estimation | |||||
|---|---|---|---|---|---|
| Parameter | Estimate | Standard Error | t Value | Approx Pr > |t| |
Lag |
| MU | 85.28375 | 2.32973 | 36.61 | <.0001 | 0 |
| AR1,1 | 0.84694 | 0.05221 | 16.22 | <.0001 | 1 |
| Constant Estimate | 13.05329 |
|---|---|
| Variance Estimate | 14.27676 |
| Std Error Estimate | 3.77846 |
| AIC | 552.8942 |
| SBC | 558.1045 |
| Number of Residuals | 100 |
Copyright © SAS Institute, Inc. All Rights Reserved.